Add a description, image, and links to the t-gcn topic page so that developers can more easily learn about it. Curate this topic Add this topic to your repo To associate your repository with the t-gcn topic, visit your repo's landing page and select "manage topics." Learn more ...
1 T-GCN is the source codes for the paper named “T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction” published in IEEE Transactions on Intelligent Transportation Systems (T-ITS) which forged the T-GCN model the spatial and temporal dependence simultaneously. ...
rxlgq/T-GCNPublic forked fromlehaifeng/T-GCN NotificationsYou must be signed in to change notification settings Fork0 Star0 Code Pull requests Actions Projects Security Insights Additional navigation options Files master __pycache__ data out
解读了一下这篇论文github上关于T-GCN的代码,主要分为main文件与TGCN文件两部分,后续有空将会更新其他部分作为baseline代码的解读(鸽)。 1、main.py # -*- coding: utf-8 -*- import pickle as pkl import tensorflow as tf import pandas as pd import numpy as np import math import os import numpy....
T-GCN模型已经作为基线方法被IEEE Trans. ITS, IEEE ITS Magazine, Information science, AAAI, KDD, WWW等跨领域顶尖期刊和会议论文引用。 论文代码地址:https://github.com/lehaifeng/T-GCN. 05 参考文献 L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, H. Li*. T-GCN: ...
GCN用于学习复杂的拓扑结构以捕获空间依赖性,而GRU用于学习交通数据的动态变化以捕获时间依赖性。T-GCN的代码:GitHub - lehaifeng/T-GCN: Temporal Graph Convolutional Network for Urban Traffic Flow Prediction Method 现有的流量预测方法:自回归综合移动平均(ARIMA)模型,SVM 和部分神经网络,考虑了交通的动态变化而...
flags.DEFINE_string('model_name', 'tgcn', 'tgcn or GRU or GCN.') model_name = FLAGS.model_name data_name = FLAGS.dataset train_rate = FLAGS.train_rate seq_len = FLAGS.seq_len output_dim = pre_len = FLAGS.pre_len batch_size = FLAGS.batch_size lr = FLAGS.learning_rate training...
|coverage| image:: https://raw.githubusercontent.com/WZBSocialScienceCenter/tmtoolkit/master/coverage.svg?sanitize=true + :target: https://github.com/WZBSocialScienceCenter/tmtoolkit/tree/master/tests + :alt: Coverage status + +.. |rtd| image:: https://readthedocs.org/projects/tmtoolkit...
4 changes: 3 additions & 1 deletion 4 KST-GCN/README.md Original file line numberDiff line numberDiff line change @@ -61,4 +61,6 @@ The manuscript can be visited at https://ieeexplore.ieee.org/document/9681326/ o python main.py --methods ktgcn You can also adjust the --seq_le...
Plato开源地址:https://github.com/tencent/plato Plato高性能图计算框架主要有以下贡献: Plato能高效地支撑腾讯超大规模社交网络图数据的各类计算,且性能达到了学术界和工业界的顶尖水平,比Spark GraphX高出1-2个数量级,使得许多按天计算的算法可在小时甚至分钟级别完成,也意味着腾讯图计算全面进入了分钟级时代。