std::make_unique也支持接收多个参数的构造函数: auto myPtr = std::make_unique<MyClass>(20, "Hello"); std::make_unique不能用于数组类型的分配。对于数组,你需要使用std::make_unique<T[]>(size)。 由于std::make_unique是一个模板,它需要编译时类型信息,因此不能用于非类型模板参数或变长模板参数。
指针为空的std::make_unique是C++标准库中的一个函数模板,用于创建一个指向动态分配对象的独占指针(unique pointer)。当使用std::make_unique函数创建对象时,如果对象的构造函数抛出异常,函数会自动处理并确保资源的正确释放,从而避免内存泄漏。 具体来说,当使用std::make_unique函数创建对象时,如果构造函数执行成功,...
std::make_unique 和 std::make_shared是三个make函数中的两个,make函数用来把一个任意参数的集合完美转移给一个构造函数从而生成动态分配内存的对象,并返回一个指向那个对象的灵巧指针。第三个make是std::allocate_shared。它像std::make_shared一样,除了第一个参数是一个分配器对象,用来进行动态内存分配。 优先...
正如你所看到的,make_unique只是将其参数完美转发给正在创建的对象的构造函数,然后利用new生成的原始指针构造std::unique_ptr,并返回创建的std::unique_ptr。这种形式的函数不支持数组或自定义删除器(参见Item 18),基于这个示范,只需增加一些功能就能写出你想要的make_unique函数。但是要记住不要将这样的函数放在std...
执行std::shared_ptr的构造函数。 如果这样的代码被产生出来,并且在运行期,computePriority产生了一个异常,则在第一步动态分配的Widget就会泄露了,因为它永远不会被存放到在第三步才开始管理它的std::shared_ptr中。 使用std::make_shared可以避免这样的问题。调用代码将看起来像这样: ...
std::make_unique 和 std::make_shared是三个make函数中的两个,make函数用来把一个任意参数的集合完美转移给一个构造函数从而生成动态分配内存的对象,并返回一个指向那个对象的灵巧指针。第三个make是std::allocate_shared。它像std::make_shared一样,除了第一个参数是一个分配器对象,用来进行动态内存分配。
在该示例中,std::make_unique自动推导出MyClass的类型,并创建了一个std::unique_ptr,指向一个新分配的MyClass对象。此外,std::make_unique也支持接收多个参数的构造函数:这自动推导出MyClass的类型,并创建了一个指向新分配的MyClass对象的std::unique_ptr,参数分别为20和"Hello"。值得注意的是...
从那时起,C++17 已经澄清了评估顺序,使得语法 A 也安全,所以这是我的问题: 是否还有理由使用 std::make_unique 而不是 std::unique_ptr 的构造函数C++17?你能举一些例子吗? 到目前为止,我能想象的唯一原因是它只允许键入 MyClass 一次(假设您不需要依赖 std::unique_ptr<Base>(new Derived(param)) 的多态...
如果我们用来构造一个实例,有没有办法让构造函数推导模板参数,就像正常调用它的构造函数一样?这是实现这一目标的最简单方法吗?Foo``std::make_unique``Foo``Foo std::make_unique< decltype(Foo{...}) > (...); 这看起来很干净,但如果构造函数需要很多参数,它可能会变成一条非常丑陋的线。Foo 解决方案...
std::make_unique将传递的所有参数转发给匹配的目标构造函数。因此,如果您传递nullptr,它将搜索接受...