给一些常用的等价无穷小量给一些常用的等价无穷小小量,例如:sinX~X (X→0);arctanX~X(X→0)等. 相关知识点: 试题来源: 解析当X→0时:(1)x~sinx~tanx~arcsinx~arctanx~ln(1 x)~e^x-1;(2)1-cosx~x^2/2;(3)(1 x)^a-1~ax(a≠0);...
用洛必达法则arctanx=1/(1+x2) sinx=-cosx
arctanx = x-(1/3)x^3+o(x^3)sinx -arctanx = (1/6)x^3+o(x^3)sinx-arctanx 等价于 (1/6)x^3
等价无穷小的替换公式如下:当x趋近于0时:e^x-1~x; In(x+1)~x;sinx~x; arcsinx ~x; tanx ~x;arctanx ~x;1-cosx ~ (x^2)/2;tanx-sinx ~(x^3)/2;(1+bx)^a-1~abx;的是等价无穷小的替换,一般用在乘除中,一般不用在加减运算的替换。#山东专升本 #专升本打卡 @师大专升本 1 抢首评 收藏...
x-arcsinx ~ -(x^3)/6 x-tanx ~ -(x^3)/3 x-arctanx ~(x^3)/3 对数函数 Loga(1+x) ~ x/lna(a>0,a不等于1) 常见:ln(1+x) ~ x 幂函数 (1+bx)^a - 1 ~ abx 常见:(1+x)^(1/n) -1~ x/n 指数函数 a^x - 1 ~ xlna (a>0,a不等于1) ...
1、当x→0时,sinx~x;tanx~x;arcsinx~x;arctanx~x;2、等价无穷小就是以数零为极限的变量,无穷小并不是很小的数;3、等价无穷小是无穷小之间的一种关系。常用的等价无穷小替换很多,比如,当x→0时,sinx~x;tanx~x;arcsinx~x;arctanx~x;1-cosx~(1/2)*(x^2);(a^x)-1~x*lna ...
常用的等价无穷小当x→0时 x~sin x~tan x~arcsin x ~arctanx~ln(1+x)~e-1, (1+x)-1~ax(a≠0),1-cosx~x,a-l~xlna, x-sinx~x,tanx-x~sx,x-ln(1+x)~1/2x*2, arcsinx-x~1/6x 3,x-arctanx~1/3*3
sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna ((a^x-1)/x~lna)(e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0)值得注意的是,等价无穷小一般只能在...
高数九个基本的等价无穷小量是:当x—>0的时候,sinx~x,tanx~x,sinx~tanx,1-cosx~x²/2,tanx-sinx~x³/2,e^x-1~x,√(1+x)-1~x/2,√(1-x)-1~-x/2,ln(1+x)~x。等价无穷小量指的是在两个无穷小量在极限运算过程中等价代换。它对于极限的求解起到简便运算...
x-arcsinx的等价无穷小是-1/3x^3。由泰勒公式可得:arctanx=x-1/3x^3,因此x→0时,arctanx-x等价于-1/3x^3。求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。