给一些常用的等价无穷小量给一些常用的等价无穷小小量,例如:sinX~X (X→0);arctanX~X(X→0)等. 相关知识点: 试题来源: 解析当X→0时:(1)x~sinx~tanx~arcsinx~arctanx~ln(1 x)~e^x-1;(2)1-cosx~x^2/2;(3)(1 x)^a-1~ax(a≠0);...
答案 x~sinx~arcsinx~tanx~arctanx~ln(1+x)~ex-1, 1-cosx~12x2, n1+x~1+xn,(x→0)limx→0tanx-sinxx3limx→0e2x-31+xx+sinx2limx→0+tan(sinx)sin(tanx)相关推荐 1写出常见的等价无穷小?反馈 收藏
等价无穷小的公式:1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)*(x^2)~secx-1。2、(a^x)-1~x*lna [a^x-1)/x~lna]。3、(e^x)-1~x、ln(1+x)~x。4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)*x、loga(1+x)~x/lna、(1+x)^a-1~ax(...
等价无穷小替换公式有什么?sinx-x, tanx-x, arctanx-x, arcsinx-x, 1+cosx-x^2/2 , e^x+1-x, a^x+1-xlna, ln(1+X)-x, (1+x)^a-1-ax。这当中x 均趋近于零,x可用方框代替,方框趋于零 级数中的等价代换如何确定?√(n+1)+√n和n^1*2次数一样,在n→∞时,二者趋近于∞的速度...
等价无穷小的替换公式如下:当x趋近于0时:e^x-1~x; In(x+1)~x;sinx~x; arcsinx ~x; tanx ~x;arctanx ~x;1-cosx ~ (x^2)/2;tanx-sinx ~(x^3)/2;(1+bx)^a-1~abx;的是等价无穷小的替换,一般用在乘除中,一般不用在加减运算的替换。#山东专升本 #专升本打卡 @师大专升本 1 抢首评 收藏...
常见的等价无穷小有:sinx~x;tanx~x;arctanx~x;ln(1+x)~x;arcsinx~x;eˣ-1~x;aˣ-1~xlna(a>0,a≠1)。采用泰勒展开的高阶等价无穷小:sinx=x-(1/6)x^3+o(x^3)cosx=1-(x^2)/2!+(x^4)/4!+o(x^4)tanx=x+(1/3)x^3+o(x^3)arcsinx=x+(1/...
等价无穷小代换公式有:arcsinx ~ x;tanx ~ x;e^x-1 ~ x;ln(x+1) ~ x;arctanx ~ x;1-cosx ~ (x^2)/2。当x→0,且x≠0,则 x~sinx~tanx~arcsinx~arctanx; x~ln(1+x)~(e^x-1); (1-cosx)~x*x/2; [(1+x)^n-1]~nx; loga(1+x)~x/lna;a得x次方~xlna;(1+x)的...
sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna ((a^x-1)/x~lna)(e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0)值得注意的是,等价无穷小一般只能在...
x-arcsinx ~ -(x^3)/6 x-tanx ~ -(x^3)/3 x-arctanx ~(x^3)/3 对数函数 Loga(1+x) ~ x/lna(a>0,a不等于1) 常见:ln(1+x) ~ x 幂函数 (1+bx)^a - 1 ~ abx 常见:(1+x)^(1/n) -1~ x/n 指数函数 a^x - 1 ~ xlna (a>0,a不等于1) ...
常用的等价无穷小替换 1、当x→0时,sinx~x;tanx~x;arcsinx~x;arctanx~x;2、等价无穷小就是以数零为极限的变量,无穷小并不是很小的数;3、等价无穷小是无穷小之间的一种关系。常用的等价无穷小替换很多,比如,当x→0时,sinx~x;tanx~x;arcsinx~x;arctanx~x;1-cosx~(1/2)*(x^2);...