在谈SiC MOSFET之前,让我们先来回顾下硅基MOSFET的发展历程。在70、80年代,用于大功率的硅MOSFET采用的大都是垂直导电路径和平面栅型结构,到90年代硅MOSFET转而开始使用“挖沟槽”来提高效率。现在,在SiC MOSFET中使用沟槽结构由于具有降低导通电阻的效果而备受瞩目。那么,SiC MOSFET是该选择平面栅还是沟槽栅呢?...
通过前几代的SiC MOSFET发展,以及根据大量的客户应用反馈,安森美SiC MOSFET器件优化了导通损耗,开通损耗,反向恢复损耗以及短路时间,使得它们在客户的应用中达到最优的一个效率。SiC MOSFET的平面结构的Active Cell的设计制造方向主要是减小开关单元间距也就是pitch值,提升开关单元的密度,减小Rdson,提升栅极氧化层的...
从图13可知碳化硅MOSFET的温升系数远小于氮化硅晶体管以及硅MOSFET,在结温100°C时相差已经达到30%和50%。根据图13可知,假设在25°C结温时碳化硅MOSFET和氮化镓晶体管的导通电阻相同,在同一个应用电路中意味着两者的导通损耗(〖I_Drms〗^2*R_(DS(on)))相同,但是当两者的结温升高到100°C时,碳化硅MOSFET的导...
2019年,三菱电机也开发出了一种沟槽的SiC MOSFET,为了解决沟槽型的栅极绝缘膜在高电压下的断裂问题,三菱电机基于在结构设计阶段进行的先进模拟,开发了一种独特的电场限制结构,将应用于栅绝缘薄膜的电场减小到常规平面型水平,使栅绝缘薄膜在高电压下获得更高的可靠性。 三菱电机的新型沟槽型SiC-MOSFET三维结构示意图 (...
英飞凌半包沟槽SiC MOSFET结构示意图 2017年,英飞凌报道了采用半边导通结构的沟槽型SiC MOSFET器件,在栅极沟槽的一边形成导电沟道。从上图看到,参杂毗邻沟槽中的区域是不对称的,沟槽的左侧壁包含了MOS沟道,它被对准到a-plane面,以实现最佳的沟道迁移率,沟槽底部的大部分被嵌入到沟槽底部下方的p型区域中。
英飞凌半包沟槽SiC MOSFET结构示意图 2017年,英飞凌报道了采用半边导通结构的沟槽型SiC MOSFET器件,在栅极沟槽的一边形成导电沟道。从上图看到,参杂毗邻沟槽中的区域是不对称的,沟槽的左侧壁包含了MOS沟道,它被对准到a-plane面,以实现最佳的沟道迁移率,沟槽底部的大部分被嵌入到沟槽底部下方的p型区域中。
沟槽结构SiC MOSFET最主要的问题在于,由于器件工作在高压状态,内部的工作电场强度高,尤其是沟槽底部,工作电场强度非常更高,很容易在局部超过最大的临界电场强度,从而产生局部的击穿,影响器件工作的可靠性,如图3所示。 图3:沟槽SiC MOSFET结构内部工作电场
沟槽栅结构是一种改进的技术,指在芯片表面形成的凹槽的侧壁上形成MOSFET栅极的一种结构。沟槽栅的特征电阻比平面栅要小,与平面栅相比,沟槽栅MOSFET消除了JFET区
在SiC MOSFET的技术路线之争上,一直有平面栅和沟槽栅两种不同的结构类型。所谓的沟槽栅,可以通俗的理解为在平面的基础上“挖坑”(如下图的示意图比较中可以清晰的看出)。国际SiC厂商们正在通过沟槽栅来更大的发挥SiC的潜力,放眼望去,有的厂商挖一个坑,有的挖两个坑,还有的是斜着挖,各种技术结构层出不穷,百花...
图1. SiC MOSFET结构横截面示意图 虽然新型400 V MOSFET与之前推出的第一代器件[2]、[3]的设计相似,但它得益于技术的不断改进,使晶胞间距明显缩小,沟道特性得到改善,漂移区特性得到更好的控制。此外,还对芯片设计进行了精心优化,以避免不必要的有效面积损失,例如通过优化结端设计。图2比较了新型400 V和...