先来看看Si和SiC材料的差别。 其中最显著的区别,莫过于SiC的临界电场强度是Si的10倍。这意味着,要达到同样的击穿电压,SiC器件所需要的漂移区厚度,要大大小于硅器件,从而SiC器件的漂移区电阻也会减小。这样的特性,自然也造就了Si MOSFET和SiC MOSFET的不同结构。 传统的Si MOSFET是平面型器件 这种器件,如果要达到...
SiC-MOSFET的导通电阻从Vgs约为20V开始变化(下降)并逐渐减小,接近最小值。一般的IGBT和Si-MOSFET的驱动电压为Vgs=10~15V,而SiC-MOSFET建议在Vgs=18V左右驱动,以充分获得低导通电阻。换句话说,两者之间的区别之一是SiC-MOSFET的驱动电压要比Si-MOSFET高。因此,在替换Si-MOSFET时,需要考虑栅极驱动器电路的调整。 内...
此外,可以看到,与150℃ 时的 Si MOSFET 特性相比,SiC、Si-MOSFET 的特性曲线斜率均放缓,因而导通电阻增加。但是,SiC-MOSFET 在 25℃ 时的变动很小,在 25℃ 环境下特性相近的产品,差距变大,温度增高时 SiC MOSFET 的导通电阻变化较小。 2.关断损耗特性 前面多次提到过,SiC 功率元器件的开关特性优异,可处理大...
在图1中,红色曲线为Si MOSFET的输出I-V特性曲线,而黑色曲线为不同VGS下,SiC MOSFET的I-V特性曲线。 对于Si MOSFET来说,如图1中,红色曲线,在VGS大于VTH时,经历一个高增益的线性区,I-V特性非常陡峭,而VGS足够大时,其I-V特性基本是平坦的,最大...
相比之下,SiC MOSFET可在更宽的范围内保持低导通电阻。此外,可以看到,与150℃时的SiMOSFET特性相比,SiC、Si-MOSFET的特性曲线斜率均放缓,因而导通电阻增加。但是,SiC-MOSFET在25℃时的变动很小,在25℃环境下特性相近的产品,差距变大,温度增高时SiC MOSFET的导通电阻变化较小。
但是,SiC-MOSFET在25℃时的变动很小,在25℃环境下特性相近的产品,差距变大,温度增高时SiC MOSFET的导通电阻变化较小。 与IGBT的区别:关断损耗特性 之前的文章中多次提到过,SiC功率元器件的开关特性优异,可处理大功率并高速开关。在此具体就与IGBT开关损耗特性的区别进行说明。 众所周知,当IGBT的开关OFF时,会流过...
SiC MOSFET 主打高压领域;GaN MOSFET 主打高频领域。根据功率、频率2个维度我们梳理主流功率器件物理特性及适用场合:Si-IGBT虽然在高压领域具有优势,但是并不能胜任高频领域需求;Si-MOSFET可以胜任高频领域,但是对于电压有一定的限制;SiC与MOSFET相比完美地解决了硅基中高压与高频很难同时实现这一难题,基于与高压...
综上,SIC MOSFET驱动也可以用自举电路驱动一个半桥,从而减少一路电源,以节省成本。但在实现自举电路的时候也会有一些问题需要注意,具体总结如下 1、由于上管在导通时需要通过自举电容放电,为了保证上端的正常开关,需要调整PWM,为自举电容预留充电时间 2、关于Dboot的选择,由于Cboot上为瞬间充电,需要考虑Dboot...
相比基于硅(Si)的MOSFET,基于碳化硅(SiC)的MOSFET器件可实现更高的效率水平,但有时难以轻易决定这项技术是否更好的选择。本文将阐述需要考虑哪些标准因素。
当从Si转换到SiC时,其中一个问题是选择合适的驱动器。如果基于Si的 MOSFET 驱动器产生的最高栅极导通电压不超过15 V,它们通常可以继续使用。然而,高达 18 V栅极导通电压可以进一步显着降低电阻 RDSon(在 60°C 时可降低多达 18%),因此,值得考虑改用其它驱动器。