Seurat目前最新版为V3,第一版是为处理空间转录组而设计,第二版针对基因droplet的单细胞技术而开发的用于单细胞质控,降维,聚类,鉴定细胞类型marker等多重功能,目前更新的第三版可以整合多组学,多批次,多实验方法的数据,把握了后续数据分析需要多组学整合的热点策略,符合下一步分析思路更全面,生物学解释更透彻的...
3.考虑到版本已经更新的问题,尽量保留Seurat v4版本 需要把v3和v4放在2个library里,所以下载安装包的时候需要给定lib。 devtools::install_version("spatstat", version = "1.64-1",lib = "D:/program/R/library/library2")) devtools::install_version("Seurat",version = package_version('3.2.3'),lib = ...
我们一直发现使用积分方法(而不是反卷积方法)具有更好的性能,这可能是由于表征空间和单细胞数据集的噪声模型存在很大差异,并且积分方法专门设计为对这些差异具有鲁棒性。因此,我们应用了Seurat v3中引入的基于“锚”的集成工作流,该工作流使注释能够从引用到查询集的概率传输。因此,我们利用sctransform归一化方法遵循此处...
然而,HVG选择的默认算法产生了差异,Jaccard index(两组之间差异基因的交集/并集)为0.22。This difference could be resolved either by selecting the “seuratv3” flavor for Scanpy or the “mean.var.plot” algorithm for Seurat。 PCA分析开始观察到更多的差异,使用默认参数运行时也会产生不同的结果。PCA图显示...
Seurat v3应用了一种基于图的集群方法,建立在(Macosko等人)的初始策略之上。重要的是,驱动聚类分析的距离度量(基于先前确定的PCs)保持不变。然而,我们将细胞距离矩阵划分成集群的方法已经得到了极大的改进。我们的方法受到最近手稿的很大启发,这些手稿将基于图的聚类方法应用于scRNA-seq数据 [SNN-Cliq, Xu and Su, ...
而随着单细胞技术的普及,很多刚开始接触编程或者没有接触过编程的朋友也开始有了分析单细胞数据需求,于是有了SeuratV3Wizard这样的完全交互的Seurat平台。在Seurat V4 版本中,也官方地提出了其交互平台(Shiny app):azimuth 并且内置了PBMC的参考数据集,可以在线分析和注释。本期Seurat weekly 就和大家探索一下Seurat ...
然而,HVG选择的默认算法产生了差异,Jaccard index(两组之间差异基因的交集/并集)为0.22。This difference could be resolved either by selecting the “seurat v3” flavor for Scanpy or the “mean.var.plot” algorithm for Seurat。 PCA分析开始观察到更多的差异,使用默认参数运行时也会产生不同的结果。PCA图...
Seurat是一个分析单细胞转录组数据的R包,用于QC,分析和探索单细胞RNA-seq数据,相关资料如下:具体流程如下:在linux或者windows中的Rstudio均可以安装运行,与安装其他R包一致。结果如下 预处理该步骤非必须,可根据实际情况作出相应变动;其目的就是根据基因的表达量、细胞中及线粒体基因表达量等特征,...
作者在小鼠造血祖细胞的数据集上证明了该观点(Nestorowa et al. Blood 2016.),其实只要是Seurat v3对象,自己的数据都是可以跑得通的。 细胞周期相关基因集使用的是人的基因,用小鼠进行测试,说明该细胞周期相关基因数据集适合人和小鼠;如果是其它物种,准备方法见 https://github.com/satijalab/seurat/issues/462。
但是因为我接触单细胞有点早,是2017附近,那个时候经历了Seurat的v2变成v3的大更新,跟现在的小伙伴们经历了v4变成v5是一样的困扰,所以其实我从来就没有在我的代码里面做SCTransform,因为早期的 NormalizeData(), ScaleData(), FindVariableFeatures()三个函数,使用的也挺好的。但是最近学徒表示他发现了这里面的细节差...