ROS / ROS2的深度学习节点 此存储库包含ROS / ROS2的深度学习推理节点和相机/视频流节点,并支持Jetson Nano / TX1 / TX2 / Xavier NX / AGX Xavier和TensorRT。 节点使用来自库和NVIDIA 教程的图像识别,对象检测和语义分割DNN,它们带有几个内置的预训练网络,用于分类,检测和分割,并能够加载自定义用户训练的...
ros_deep_learning This repo contains deep learning inference nodes for ROS with support for Jetson Nano/TX1/TX2/Xavier and TensorRT. The nodes use the image recognition, object detection, and semantic segmentation DNN's from the jetson-inference library and NVIDIA Hello AI World tutorial, which ...
搜试试 续费VIP 立即续费VIP 会员中心 VIP福利社 VIP免费专区 VIP专属特权 客户端 登录 百度文库 期刊文献 图书rosdeeplearning用法rosdeeplearning用法 rosdeeplearning用法:The rosdeeplearning usage ©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | 文库协议 | 网站地图 | 百度营销 ...
Deep learning inference nodes for ROS with support for NVIDIA Jetson TX1/TX2/Xavier and TensorRT - alperhanbay/ros_deep_learning
首先安装ros melodic,参考教程 安装jetson-inference ,参考教程 安装ros_deep_learning $ cd ~/catkin_ws/src $ git clone https://github.com/dusty-nv/ros_deep_learning $ cd ../ $ catkin_make imageNet测试: 新窗口,启动roscore roscore 新窗口,发布图片话题 ...
roslaunch ros_deep_learning video_viewer.ros1.launch input:=csi://0 output:=display://0 For input and output settings, refer tohttps://github.com/dusty-nv/jetson-inference/blob/master/docs/aux-streaming.mdfor details Launch the imagenet node for video recognition: ...
Deep learning inference nodes for ROS / ROS2 with support for NVIDIA Jetson and TensorRT - ros_deep_learning/package.xml at master · dusty-nv/ros_deep_learning
专注于ROS1/ROS2机器人系统为核心的开源硬件、开源软件的整理和分享 。覆盖Turtlebot2,Turtlebot3,Turtlebot4,无人机,无人船,无人车,机械臂,嵌入式,操作系统,开发语言,Arduino,Raspberry Pi,树莓派,UAV, Pixhawk,Paparazzi等创造源于生活 生活在于折腾 搜索关键字 搜索 ...
With the backing of partners and presenters such as Bosch, DJI, Fetch Robotics, and ETHZurich, the ROS community proved itself stronger than ever; and Jetson’s awareness among the robotics community has reached an all-time high. Now it’s up to the brilliant roboticists around the...
AtomAI is a Pytorch-based package for deep and machine learning analysis of microscopy data that doesn't require any advanced knowledge of Python or machine learning. The intended audience is domain scientists with a basic understanding of how to use NumPy and Matplotlib. It was developed by Max...