Research code (the LightningModule). Engineering code (you delete, and is handled by the Trainer). Non-essential research code (logging, etc... this goes in Callbacks). Data (use PyTorch Dataloaders or organize them into a LightningDataModule). ...
2.1 数据模块LightningDataModule 通常情况下,我们需要做一些预处理,以及在定义完自己的dataset后,需要定义dataloader,这里可以直接继承LightningDataModule模块,直接重写其中的方法即可。 class MNISTDataModule(LightningDataModule): def __init__(self,root_dir,val_size,num_workers,batch_size): super(MNISTDataModule...
通过定义LightningDataModule的子类,数据集分割、加载的代码将整合在一起,可以实现的方法有: 1classMyDataModule(LightningDataModule):2def__init__(self):3super().__init__()4defprepare_data(self):5#download, split, etc...6#only called on 1 GPU/TPU in distributed7defsetup(self,stage:str):#st...
来源|pytorch-lightning原文链接:pytorch-lightning.readthedocs.io 本笔记本将引导你了解如何开始使用数据模块。 随着pytorch lightning版本0.9.0的发布,我们加入了一个名为LightningDataModule的新类,以帮助你在LightningModule的数据相关的操作解耦。有关数据模块的最新文档可在此处找到:pytorch-lightning.readthedocs.io。
这意味着可以像使用PyTorch模块一样完全使用LightningModule,例如预测 或者用于预训练 2.2 数据 data 在本教程中,使用MNIST。 让我们生成MNIST的三个部分,即训练,验证和测试部分。 同样,PyTorch中的代码与Lightning中的代码相同。 数据集被添加到数据加载器Dataloader中,该数据加载器处理数据集的加载,shuffling,batching。
数据(Data),用户通过torch.utils.data.DataLoader实现,也可以封装成pl.LightningDataModule。 二,pytorch-lightning使用范例 下面我们使用minist图片分类问题为例,演示pytorch-lightning的最佳实践。 1,准备数据 代码语言:javascript 代码运行次数:0 运行 AI代码解释 import torch from torch import nn from torchvision impo...
在DInterface和MInterface分别是data_interface.py和model_interface.py中创建的类,他们两个分别就是 class DInterface(pl.LightningDataModule): 用于所有数据集的接口,在setup()方法中初始化你准备好的xxxdataset1.py,xxxdataset2.py中定义的torch.utils.data.Dataset类。在train_dataloader,val_dataloader,test_datal...
Lightning将以下结构强制应用于代码,从而使其可重用和共享: 研究代码(LightningModule)。 工程代码(Trainer)。 非必要的研究代码(Callbacks)。 数据(使用PyTorch DataLoader或将它们放入LightningDataModule中)。 完成此操作后,就可以在多个GPU,TPU,CPU上甚至在16位精度下进行训练,而无需更改代码!
研究代码 (Research code),用户继承LightningModule实现。 工程代码 (Engineering code),用户无需关注通过调用Trainer实现。 非必要代码 (Non-essential research code,logging, etc...),用户通过调用Callbacks实现。 数据(Data),用户通过torch.utils.data.DataLoader实现,也可以封装成pl.LightningDataModule。 二,pytorch...
研究代码 (Research code),用户继承LightningModule实现。 工程代码 (Engineering code),用户无需关注通过调用Trainer实现。 非必要代码 (Non-essential research code,logging, etc...),用户通过调用Callbacks实现。 数据(Data),用户通过torch.utils.data.DataLoader实现。 二,pytorch-lightning使用范例 下面我们使用minis...