class DInterface(pl.LightningDataModule): 用于所有数据集的接口,在setup()方法中初始化你准备好的xxxdataset1.py,xxxdataset2.py中定义的torch.utils.data.Dataset类。在train_dataloader,val_dataloader,test_dataloader这几个方法中载入Dataloader即可。 class MInterface(pl.LightningModule): 用作模型的接口,在__...
官网地址是:https://lightning.ai/ pip进行安装:pip show pytorch_lightning 下面使用MNIST来展示如何使用pytorch_lightning来简化自己的代码 2.1 数据模块LightningDataModule 通常情况下,我们需要做一些预处理,以及在定义完自己的dataset后,需要定义dataloader,这里可以直接继承LightningDataModule模块,直接重写其中的方法即可。
class MyDataModule(pl.LightningDataModule): def __init__(self): super().__init__() ...blablabla... def setup(self, stage): # 实现数据集的定义,每张GPU都会执行该函数, stage 用于标记是用于什么阶段 if stage == 'fit' or stage is None: self.train_dataset = CustomImageDataset("train"...
这种方法是继承pl.LightningDataModule来提供训练、校验、测试的数据。 class MyDataModule(pl.LightningDataModule): def __init__(self): super().__init__() ...blablabla... def setup(self, stage): # 实现数据集的定义,每张GPU都会执行该函数, stage 用于标记是用于什么阶段 if stage == 'fit' or...
通过定义LightningDataModule的子类,数据集分割、加载的代码将整合在一起,可以实现的方法有: 1classMyDataModule(LightningDataModule):2def__init__(self):3super().__init__()4defprepare_data(self):5#download, split, etc...6#only called on 1 GPU/TPU in distributed7defsetup(self,stage:str):#st...
Lightning 提供了结构化的 PyTorch code 看!两者的代码完全相同! 这意味着可以像使用PyTorch模块一样完全使用LightningModule,例如预测 或者用于预训练 2.2 数据 data 在本教程中,使用MNIST。 让我们生成MNIST的三个部分,即训练,验证和测试部分。 同样,PyTorch中的代码与Lightning中的代码相同。
理论已经足够,现在我们将使用PyTorch Lightning实现LetNet CNN。由于其简单性和小型尺寸,选择了LeNet作为示例。 模型实现 在PyTorch中,新模块继承自pytorch.nn.Module。在PyTorch Lighthing中,模型类继承自ligthning.pytorch.LightningModule。 你可以像使用 nn.Module 类一样使用 ligthning.pytorch.LightningModule,只是它...
PyTorch Lightning的基础概念 核心组件: LightningModule:用户需要定义自己的LightningModule类来实现模型的训练、验证、测试逻辑。 Trainer:用于管理模型训练、验证和测试过程的类,可以配置多种选项,如训练周期数、设备、数据加载器等。 DataModule:负责数据的准备、划分和加载,允许用户将数据处理逻辑与模型训练逻辑分离。
Lightning将以下结构强制应用于代码,从而使其可重用和共享: 研究代码(LightningModule)。 工程代码(Trainer)。 非必要的研究代码(Callbacks)。 数据(使用PyTorch DataLoader或将它们放入LightningDataModule中)。 完成此操作后,就可以在多个GPU,TPU,CPU上甚至在16位精度下进行训练,而无需更改代码!
LightningModule将你的PyTorch代码组织成6个部分:初始化(__init__和setup())。训练(training_step())验证(validation_step())测试(test_step())预测(predict_step())优化器和LR调度器(configure_optimizers())当你使用Lightning时,代码不是抽象的——只是组织起来的。所有不在LightningModule中的其他代码都已由...