train_dataloader()、val_dataloader()和test_dataloader()都返回PyTorch dataloader实例,这些实例是通过包装我们在setup()中准备的各自数据集创建的 class MNISTDataModule(LightningDataModule): def __init__(self, data_dir: str = PATH_DATASETS): super().__init__() self.data_dir = data_dir self.tran...
class DInterface(pl.LightningDataModule): 用于所有数据集的接口,在setup()方法中初始化你准备好的xxxdataset1.py,xxxdataset2.py中定义的torch.utils.data.Dataset类。在train_dataloader,val_dataloader,test_dataloader这几个方法中载入Dataloader即可。 class MInterface(pl.LightningModule): 用作模型的接口,在__...
使用DataModule的另一种方法是将模型模块的初始化延迟到LightningModule的设置方法,如下所示: class LitMNIST(LightningModule): def __init__(self): self.l1 = None def prepare_data(self): download_data() tokenize() def setup(self, stage: Optional[str] = None): # 步骤可能是“拟合”、“验证”...
通过定义LightningDataModule的子类,数据集分割、加载的代码将整合在一起,可以实现的方法有: 1classMyDataModule(LightningDataModule):2def__init__(self):3super().__init__()4defprepare_data(self):5#download, split, etc...6#only called on 1 GPU/TPU in distributed7defsetup(self,stage:str):#st...
研究代码 (Research code),用户继承LightningModule实现。 工程代码 (Engineering code),用户无需关注通过调用Trainer实现。 非必要代码 (Non-essential research code,logging, etc...),用户通过调用Callbacks实现。 数据(Data),用户通过torch.utils.data.DataLoader实现,也可以封装成pl.LightningDataModule。 二,pytorch...
理论已经足够,现在我们将使用PyTorch Lightning实现LetNet CNN。由于其简单性和小型尺寸,选择了LeNet作为示例。 模型实现 在PyTorch中,新模块继承自pytorch.nn.Module。在PyTorch Lighthing中,模型类继承自ligthning.pytorch.LightningModule。 你可以像使用 nn.Module 类一样使用 ligthning.pytorch.LightningModule,只是它...
classMyDataModule(pl.LightningDataModule):def__init__(self):super().__init__()...blablabla...defsetup(self,stage):# 实现数据集的定义,每张GPU都会执行该函数,stage 用于标记是用于什么阶段ifstage=='fit'or stage is None:self.train_dataset=DCKDataset(self.train_file_path,self.train_file_num...
class MyDataModule(pl.LightningDataModule): def __init__(self): super().__init__() ...blablabla... def setup(self, stage): # 实现数据集的定义,每张GPU都会执行该函数, stage 用于标记是用于什么阶段 if stage == 'fit' or stage is None: ...
LightningDataModule): def __init__(self, data_dir: str = "./minist/", batch_size: int = 32, num_workers: int =4): super().__init__() self.data_dir = data_dir self.batch_size = batch_size self.num_workers = num_workers def setup(self, stage = None): transform = T....
Lightning将以下结构强制应用于代码,从而使其可重用和共享: 研究代码(LightningModule)。 工程代码(Trainer)。 非必要的研究代码(Callbacks)。 数据(使用PyTorch DataLoader或将它们放入LightningDataModule中)。 完成此操作后,就可以在多个GPU,TPU,CPU上甚至在16位精度下进行训练,而无需更改代码!