需要注意的是DataLoader的部分初始化参数之间存在互斥关系,这个你可以通过阅读源码更深地理解,这里只做总结: 如果你自定义了batch_sampler,那么这些参数都必须使用默认值:batch_size,shuffle,sampler,drop_last. 如果你自定义了sampler,那么shuffle需要设置为False 如果sampler和batch_sampler都为None,那么batch_sampler使用...
DataLoader返回的是可迭代的数据装载器(DataLoader),其初始化的参数设置如下。 DataLoader(dataset,batch_size=1,shuffle=False,sampler=None,batch_sampler=None,num_workers=0,collate_fn=None,pin_memory=False,drop_last=False,timeout=0,worker_init_fn=None, *,prefetch_factor=2,persistent_workers=False) 在...
classDataLoader(object):def__init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None) 可以看到初始化参数里有两种sampler:sampler和batch_sampler,都默认为...
classDataLoader(object):def__init__(self,dataset,batch_size=1,shuffle=False,sampler=None,batch_sampler=None,num_workers=0,collate_fn=default_collate,pin_memory=False,drop_last=False,timeout=0,worker_init_fn=None) 可以看到初始化参数里有两种sampler:sampler和batch_sampler,都默认为None。前者的作用...
PyTorch - 数据读取机制DataLoader pytorch的数据读取机制DataLoader包括两个子模块,Sampler模块,主要是生成索引index,DataSet模块,主要是根据索引读取数据。Dataset 类是一个抽象类,它可以用来表示数据集。我们通过继承 Dataset 类来自定义数据集的格式、大小和其它属性,后面就可以供 DataLoader 类直接使用。
第2个步骤从0到n-1的范围中抽样出m个数的方法是由 DataLoader的sampler和batch_sampler参数指定的。 sampler参数指定单个元素抽样方法,一般无需用户设置,程序默认在DataLoader的参数shuffle=True时采用随机抽样,shuffle=False时采用顺序抽样。 batch_sampler参数将多个抽样的元素整理成一个列表,一般无需用户设置,默认方法...
Pytorch中已经实现的Sampler有如下几种: SequentialSampler RandomSampler WeightedSampler SubsetRandomSampler 需要注意的是DataLoader的部分初始化参数之间存在互斥关系,这个你可以通过阅读源码更深地理解(https://github.com/pytorch/pytorch/blob/0b868b19063645afed59d6d49aff1e43d1665b88/torch/utils/data/dataloader...
Dataloader Dataloader涉及两个部分,一是sampler部分,用于生成数据的索引(即序号),二是dataset,根据索引来读取相应的数据和标签。 torch.utils.data.Dataloader 功能:构建可迭代的数据装载器 主要属性: dataset:Dataset类,决定数据从哪里读取以及如何读取 batchsize:批大小 ...
一、DataLoader的基本参数 使用DataLoader时,需要传入一个Dataset对象和一些可选参数。以下是DataLoader的一些常用参数: dataset(必需):要加载的数据集,必须是Dataset类的实例。 batch_size(可选,默认为1):每个批次包含的数据样本数。 shuffle(可选,默认为False):是否在每个epoch开始时打乱数据。 sampler(可选):定义从...
Dataloader Dataloader对Dataset(和Sampler等)打包,完成最后对数据的读取的执行工作,一般不需要自己定义或者重写一个Dataloader的类(或子类),直接使用即可,通过传入参数定制Dataloader,定制化的功能应该在Dataset(和Sampler等)中完成了。 Dataloader的完整签名见:https://pytorch.org/docs/stable/data.html#torch.utils.data...