可以看到初始化参数里有两种sampler:sampler和batch_sampler,都默认为None。前者的作用是生成一系列的index,而batch_sampler则是将sampler生成的indices打包分组,得到一个又一个batch的index。例如下面示例中,BatchSampler将SequentialSampler生成的index按照指定的batch size分组。 代码语言:txt AI代码解释 >>>in : list(...
self.num_workers=num_workers...ifsampler is not None and shuffle:raiseValueError('sampler option is mutually exclusive with "shuffle"')...ifbatch_sampler is None:ifsampler is None:ifshuffle:sampler=RandomSampler(dataset)else:sampler=SequentialSampler(dataset)batch_sampler=BatchSampler(sampler,batch_...
dataset:必须首先使用数据集构造 DataLoader 类。 Shuffle:是否重新整理数据。 Sampler:指的是可选的 torch.utils.data.Sampler 类实例。采样器定义了检索样本的策略,顺序或随机或任何其他方式。使用采样器时应将 Shuffle 设置为 false。 Batch_Sampler:批处理级别。
第2个步骤从0到n-1的范围中抽样出m个数的方法是由 DataLoader的sampler和batch_sampler参数指定的。 sampler参数指定单个元素抽样方法,一般无需用户设置,程序默认在DataLoader的参数shuffle=True时采用随机抽样,shuffle=False时采用顺序抽样。 batch_sampler参数将多个抽样的元素整理成一个列表,一般无需用户设置,默认方法...
classDataLoader(object):def__init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None) 可以看到初始化参数里有两种sampler:sampler和batch_sampler,都默认为...
1. DataLoader 1.1 DataLoader类实现 1.1.1 构造函数__init__实现 构造函数有如下参数: dataset:传入自己定义好的数据集类Dataset batch_size:默认值为1,它代表着每批次训练的样本的个数 shuffle:布尔类型,True为打乱数据集,False为不打乱数据集 sampler:决定以何种方式对数据进行采样,可以不用shuffle随机打乱样本,...
2.1 sampler:分布式训练需DistributedSampler train_sampler = torch.utils.data.distributed.DistributedSampler(train_data) DataLoader构造函数中相关代码: if batch_sampler is None: if sampler is None: if shuffle: sampler = RandomSampler(dataset) ##如果shuffer就随机 ...
DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_works=0, clollate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None) AI代码助手复制代码
dataset[possibly_batched_index] return self.collate_fn(data) Automatic batching 的处理逻辑可以简化为: sampler 采样dataset batch_sampler 依次将 sampler 采样得到的 indices 进行合并,当数量等于 batch_size 时将这个 batch 的 indices 返回。drop_last 决定是否丢弃最后不足一个 batch 的部分 DataLoader 依次...
第②步,BatchSampler根据DataLoader的batch_size参数将Sampler提供的序列划分成多个batch大小的可迭代序列组,drop_last参数决定是否保留最后一组。 第③步,兵分两路的Sampler(BatchSampler)和Dataset合二为一,在迭代读取DataLoader时,用BatchSampler中一个batch的编号查找Dataset中对应的数据和标签,读出一个batch数据。 数据...