sampler 采样dataset batch_sampler 依次将 sampler 采样得到的 indices 进行合并,当数量等于 batch_size 时将这个 batch 的 indices 返回。drop_last 决定是否丢弃最后不足一个 batch 的部分 DataLoader 依次按照 batch_sampler 提供的 batch indices 将数据从 dataset 中读出,传给 collate_fn 进行整理,返回 Tensor...
要更加细致地理解Sampler原理,我们需要先阅读一下DataLoader 的源代码,如下: 代码语言:txt 复制 class DataLoader(object): def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False, time...
第2个步骤从0到n-1的范围中抽样出m个数的方法是由 DataLoader的sampler和batch_sampler参数指定的。 sampler参数指定单个元素抽样方法,一般无需用户设置,程序默认在DataLoader的参数shuffle=True时采用随机抽样,shuffle=False时采用顺序抽样。 batch_sampler参数将多个抽样的元素整理成一个列表,一般无需用户设置,默认方法...
dataset:必须首先使用数据集构造 DataLoader 类。 Shuffle:是否重新整理数据。 Sampler:指的是可选的 torch.utils.data.Sampler 类实例。采样器定义了检索样本的策略,顺序或随机或任何其他方式。使用采样器时应将 Shuffle 设置为 false。 Batch_Sampler:批处理级别。 num_workers:加载数据所需的子进程数。 collate_fn...
第2个步骤从0到n-1的范围中抽样出m个数的方法是由 DataLoader的sampler和batch_sampler参数指定的。 sampler参数指定单个元素抽样方法,一般无需用户设置,程序默认在DataLoader的参数shuffle=True时采用随机抽样,shuffle=False时采用顺序抽样。 batch_sampler参数将多个抽样的元素整理成一个列表,一般无需用户设置,默认方法...
DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,batch_sampler=None, num_workers=0, collate_fn=None,pin_memory=False, drop_last=False, timeout=0,worker_init_fn=None, *, prefetch_factor=2,persistent_workers=False) dataset (Dataset): 提供数据的数据集对象。
第2个步骤从0到n-1的范围中抽样出m个数的方法是由 DataLoader的 sampler和 batch_sampler参数指定的。 sampler参数指定单个元素抽样方法,一般无需用户设置,程序默认在DataLoader的参数shuffle=True时采用随机抽样,shuffle=False时采用顺序抽样。 batch_sampler参数将多个抽样的元素整理成一个列表,一般无需用户设置,默认方...
一、Dataloader使用 参数设置: 1、dataset,这个就是PyTorch已有的数据读取接口(比如torchvision.datasets.ImageFolder)或者自定义的数据接口的输出,该输出要么是torch.utils.data.Dataset类的对象,要么是继承自torch.utils.data.Dataset类的自定义类的对象。 2、batch_size,根据具体情况设置即可。
timeout:如果是正数,表明等待从加载一个batch等待的时间,若超出设定的时间还没有加载完,就放弃这个batch,如果是0,表示不设置限制时间。默认为0 Dataloader参数之间的互斥 值得注意的是,Dataloader的参数之间存在互斥的情况,主要针对自己定义的采样器: sampler:如果自行指定了sampler参数,则shuffle必须保持默认值,即False ...
DataLoader的参数为: DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None)