LSSVM工具箱的trainlssvm函数和simlssvm函数一般用于二分类问题,多分类问题则需要构造多个二分类器。LSSVM工具箱的code函数可以将多分类任务编码和解码为多个二分类器。 首先使用code函数对多分类问题进行编码,然后用trainlssvm函数和simlssvm函数分别对数据进行训练和测试,再使用code函数对测试结果进行解码。PSO优化LSSV...
首先,采用时域、频域、时频域特征提取方法从质量振动信号中提取原始特征;由于提取的原始特征仍然具有高维且包含冗余信息,采用多特征融合技术PCA对原始特征进行合并降维,提取出典型的敏感特征;然后,基于提取的特征构建并训练LS-SVM模型用于轴承退化过程预测。最后,用粒子群优化 (PSO) 用于选择 LS-SVM 参数进行轴承加速失效...
轴承退化过程预测在工业中极为重要,本文提出了一种基于主成分分析(PCA)和优化的LS-SVM方法实现轴承退化预测的新方法。首先,采用时域、频域、时频域特征提取方法从质量振动信号中提取原始特征;由于提取的原始特征仍然具有高维且包含冗余信息,采用多特征融合技术PCA对原始特征进行合并降维,提取出典型的敏感特征;然后,基于提...
代码获取方式:【代码分享】基于最小二乘支持向量机(LSSVM)+自适应带宽核函数密度估计(ABKDE)的多...
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLO...
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLO...
PSO-LSSVM的MATLAB代码.rar评分: 参考用PSO优化LSSVM解决回归问题,本程序在此基础上用PSO优化LSSVM解决多分类的问题,通过PSO对LSSVM的两个参数进行寻优,分类精度能达到90%以上。程序使用了LSSVM的工具箱,并参考工具箱的说明书使用了三个函数,先对多分类的标签进行处理,然后训练得到分类模型,用模型对测试数据进行分...
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLO...
为提高基于支持向量机(SVM)的时间序列预测方法的泛化能力与预测精度,研究了一种基于粒子群优化(PSO)的LSSVM.该方法以交叉验证误差为评价准则,利用PSO对多个具有不同超参数的SVM进行基于迭代进化的优化选择,并以交叉验证误差最小的SVM作为最终优化后的SVM.时间序列预测实例表明,经PSO优化后的SVM的预测精度高于未经优化...
粒子群算法PSO优化LSSVM最小二乘支持向量机惩罚参数c和核函数参数g,用于回归预测,有例子,易上手,简单粗暴,直接替换数据即可。 仅适应于windows系统。 质量保证,完美运行。 本人在读博士研究生,已发表多篇sci,非网络上的学习代码,不存在可比性。 ID:6999630547781158...