性质:n个节点生成的最小生成树有n-1条边 & 最小生成树里多加一条边能生成含该边的一个环 构造方法:Prim算法 & Kruskal算法 一、Prim算法:逐个点连通的方式构造最小生成树(时间复杂度O(n*n),适合稠密图) 稀疏图&稠密图:有很少条边或弧(边的条数|E|远小于|V|²)的图称为稀疏图(sparse graph),反之...
Prim算法和Kruskal算法都能从连通图找出最小生成树。区别在于Prim算法是以某个顶点出发挨个找,而Kruskal是先排序边,每次选出最短距离的边再找。 一、Prim(普里姆算法)算法: Prim算法实现的是找出一个有权重连通图中的最小生成树,即:具有最小权重且连接到所有结点的树。(强调的是树,树是没有回路的)。 Prim算法...
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机...
其实单按照这个Prim算法的思想去选的话,是不需要判环的,我们上面也解释了。 但是,我们现在用优先级队列去选的话是需要判断的,比如: 大家看这种情况,现在黑色的结点时已经选到的,在X集合中,剩下两个白色结点d、e在Y中,那按照Prim算法我们现在能选的边——X集合和Y集合中顶点直接相连的边,只有cd、fe和fd三条...
Kruskal算法: A 是一个森林,该森林的顶点为 V ,每次加入到 A 中的安全边永远是权重最小的连接两个不同分量的边。 Prim算法: A 是一棵树,每次加入到 A 中的安全边永远连接 A 和V−A 的边中权重最小的边。 这里假设 G 用邻接表表示。 Kruskal算法(Kruskal's algorithm) Kruskal算法寻找安全边的算法是...
Prim算法适合操作稠密图 由于稠密图的边数接近于 V^2,在这种情况下,Prim算法的 O(V^2) 时间复杂度并不会显得特别低效。这使得 Prim 算法在稠密图中仍然非常有效,尤其是与适合稀疏图的算法(如 Kruskal 算法)相比,它的实现更加简单和直接。 Kruskal算法适合处理稀疏图 在稀疏图中,排序和并查集操作都相对较快,使...
Prim算法和Kruskal算法都能从连通图找出最小生成树。区别在于Prim算法是挨个找,而Kruskal是先排序再找。 一、Prim算法: Prim算法实现的是找出一个有权重连通图中的最小生成树,即:具有最小权重且连接到所有结点的树。(强调的是树,树是没有回路的)。 Prim算法是这样来做的...
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在...
找到连通图的最小生成树,有两种经典的算法:普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法 一、普里姆算法 普利姆算法步骤 从图中某一个顶点出发(这里选V0),寻找它相连的所有结点,比较这些结点的权值大小,然后连接权值最小的那个结点。(这里...
Prim算法和Kruskal算法介绍 ⼀、Prim算法 普利姆(Prim)算法适⽤于求解⽆向图中的(Minimum Cost Spanning Tree)。下⾯是Prim算法构造最⼩⽣成树的过程图解。选择⼀个节点开始,⽐如V1进⼊集合U,剩下的集合的V-U包括剩下的节点,然后寻找从集合U到集合V-U最近的路径。这⾥有三条路径分别是权重...