性质:n个节点生成的最小生成树有n-1条边 & 最小生成树里多加一条边能生成含该边的一个环 构造方法:Prim算法 & Kruskal算法 一、Prim算法:逐个点连通的方式构造最小生成树(时间复杂度O(n*n),适合稠密图) 稀疏图&稠密图:有很少条边或弧(边的条数|E|远小于|V|²)的图称为稀疏图(sparse graph),反之...
Prim算法和Kruskal算法都能从连通图找出最小生成树。区别在于Prim算法是以某个顶点出发挨个找,而Kruskal是先排序边,每次选出最短距离的边再找。 一、Prim(普里姆算法)算法: Prim算法实现的是找出一个有权重连通图中的最小生成树,即:具有最小权重且连接到所有结点的树。(强调的是树,树是没有回路的)。 Prim算法...
重复步骤2和3,直到已选择的边的集合中包含n-1条边。 时间复杂度:O(eloge)(e为边数,log表示以2为底的对数)。 适用场景:更适用于边稀疏图。 总的来说,Prim算法和Kruskal算法在寻找最小生成树时各有优势,选择哪种算法取决于具体问题的特点和图的稠密程度。
Kruskal算法: A 是一个森林,该森林的顶点为 V ,每次加入到 A 中的安全边永远是权重最小的连接两个不同分量的边。 Prim算法: A 是一棵树,每次加入到 A 中的安全边永远连接 A 和V−A 的边中权重最小的边。 这里假设 G 用邻接表表示。 Kruskal算法(Kruskal's algorithm) Kruskal算法寻找安全边的算法是...
最小生成树的Prim算法和Kruskal算法是解决了同一问题的两种不同策略。核心区别在于它们构建最小生成树的方法不同、适用场景有所差异、以及算法的时间复杂度有所不同。Prim算法以顶点为中心扩展,适合于稠密图,因为它每次添加的是与已选顶点集合距离最近的顶点。而Kruskal算法以边为中心,适用于稀疏图,因为它每次选择的是...
Prim算法和Kruskal算法都能从连通图找出最小生成树。区别在于Prim算法是挨个找,而Kruskal是先排序再找。 一、Prim算法: Prim算法实现的是找出一个有权重连通图中的最小生成树,即:具有最小权重且连接到所有结点的树。(强调的是树,树是没有回路的)。 Prim算法是这样来做的...
总的来说,Prim算法是以点为对象,挑选与点相连的最短边来构成最小生成树。而Kruskal算法是以边为对象,不断地加入新的不构成环路的最短边来构成最小生成树。 参考链接:克鲁斯卡尔算法 下 - 一步一步写算法 - 极客学院Wiki 三、Prim算法和Kruskal算法的实战练习 ...
找到连通图的最小生成树,有两种经典的算法:普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法 一、普里姆算法 普利姆算法步骤 从图中某一个顶点出发(这里选V0),寻找它相连的所有结点,比较这些结点的权值大小,然后连接权值最小的那个结点。(这里...
最小生成树-Prim算法和Kruskal算法,Prim算法1.概览普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex(graphtheory)),且其所有边的权值之和亦为最小。该
Prim算法和Kruskal算法介绍 ⼀、Prim算法 普利姆(Prim)算法适⽤于求解⽆向图中的(Minimum Cost Spanning Tree)。下⾯是Prim算法构造最⼩⽣成树的过程图解。选择⼀个节点开始,⽐如V1进⼊集合U,剩下的集合的V-U包括剩下的节点,然后寻找从集合U到集合V-U最近的路径。这⾥有三条路径分别是权重...