一,按照索引排序(sort by index) 对于一个Series或DataFrame,可以按照索引进行排序,使用sort_index()函数来实现索引的排序: DataFrame.sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, ignore_index=False, key=None) 参数axis用于...
defsort_index(self,axis:Any=0,# 与DataFrame兼容所需的参数level:Any=None,# 指定索引level排序ascending:bool|int|Sequence[bool|int]=True,inplace:bool=False,kind:str="quicksort",# `快速排序`na_position:str="last",sort_remaining:bool=True,ignore_index:bool=False,key:(Index)->Index|ExtensionAr...
unsorted_df.sort_index(axis=0) #按照行标签降序排序unsorted_df.sort_index(ascending=False) #按照列标签进行排序unsorted_df.sort_index(axis=1)
ignore_index: 如果DataFrame的行索引为多重索引,排序结果显示的索引默认是多重索引,ignore_index参数默认为False,将ignore_index参数设置成True则结果中会隐藏多重索引,显示成数值型索引(排序完成后从0开始编号)。 sort_remaining: 按多重索引排序时,按level指定的行索引排序后,默认会继续对剩余的行索引进行排序,sort...
就地使用 .sort_values() 就地使用 .sort_index() 结论 学习Pandas排序方法是开始或练习使用 Python进行基本数据分析的好方法。最常见的数据分析是使用电子表格、SQL或pandas 完成的。使用 Pandas 的一大优点是它可以处理大量数据并提供高性能的数据操作能力。
sort_index(axis=1, ascending=False) 值排序 代码语言:javascript 代码运行次数:0 运行 AI代码解释 # 按值对Series进行排序,使用order(),默认空值会置于尾部 s = pd.Series([4, 6, np.nan, 2, np.nan]) s.order() df.sort_values(by=['a','b'])#按列进行排序 排名 代码语言:javascript 代码...
一、sort_index方法sort_index方法用于对DataFrame或Series的索引进行排序。默认情况下,它会按照索引的升序排序。如果想要按照降序排序,可以设置参数ascending为False。 对整个DataFrame进行排序我们可以使用sort_index方法对整个DataFrame进行排序,如下所示: import pandas as pd data = {'A': [1, 3, 2], 'B': [...
sort_values 除了使用index进行排序,也可以对具体的值进行排序,常用的参数有by、axis、ascending和inplace by:值排序所用的列名或index名,可以输入列表。 axis:指定通过行或列进行排序,0表示行,1表示列。需要注意的是如果by使用的是列名,axis只能为0;若by使用的是行index,axis只能为1。 ascending与inplace的含义与...
pandas 的 dataframe 数据对象有两种的排序方式,一种是根据索引标签(index label)排序,另一种是按照指定某一列的值(value)排序,它们分别对应sort_index函数和sort_values函数。 1按索引标签排序 1.1按行索引标签排序 1.2按列索引标签排序 2按值排序 3排序算法 ...
DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last') axis:{0 or ‘index’, 1 or ‘columns’}, default 0,默认按照列排序,即纵向排序;如果为1,则是横向排序。 by:str or list of str;如果axis=0,那么by="列名";如果axis=1,那么by="行名...