在ORB的原始论文:ORB: an efficient alternative to SIFT or SURF已经考虑到了特征点提取的多尺度问题,使用图像金字塔的方式对多个尺度的图像进行ORB特征提取。但是在ORB-SLAM系列中,为了让特征点分散更加均匀,ORB-SLAM的作者根据OpenCV的实现进行了修改,让特征点尽可能地分散到图片的整个区域而不是只有在纹理明显的区...
在ORB的原始论文:ORB: an efficient alternative to SIFT or SURF已经考虑到了特征点提取的多尺度问题,使用图像金字塔的方式对多个尺度的图像进行ORB特征提取。但是在ORB-SLAM系列中,为了让特征点分散更加均匀,ORB-SLAM的作者根据OpenCV的实现进行了修改,让特征点尽可能...
首先,在跟踪线程中采用了轻量化的YOLOv4(you only look once version 4)目标检测网络,对图像金字塔中的每一层图像进行处理,识别并移除动态特征点,进而提升位姿估计的精确度;其次,融合惯性测量单元的积分数据,提取关键帧中的相机内外参数信息,...
为了实现特征点在多个尺度下的匹配能力,ORB-SLAM采用了图像金字塔技术,对原始图像进行多级缩放,并在不同尺度的图像上进行特征点提取。这不仅确保了特征点具有尺度信息,还能在不同分辨率下实现高效匹配。在均匀分布ORB特征点的实现上,ORB-SLAM引入了两种方法:在ORB-SLAM1中,图像被平均分为与特征点数量...
ORB-SLAM3是一种基于特征点的SLAM系统,支持单目、双目和RGB-D相机。它采用ORB(Oriented FAST and Rotated BRIEF)特征进行特征点提取和匹配,能够实时处理大规模场景,且具备高精度和鲁棒性。 二、源码结构总览 ORB-SLAM3的源码结构清晰,主要模块包括: Main:主程序入口。
使用Superopint进行特征提取,基本框架如图2所示。 ▲图2|Superpoint基本架构©️【深蓝AI】编译 特征提取基本使用的是Superpoint框架,该文章使用了一种自适应的特征点得分阈值设定方式,针对normal场景和challenging场景,会自适应的去调整阈值参数,自适应阈值机制考虑了两个因素:intra-feature relationship 和 inter-frame...
ORB-SLAM3特征点随机性问题的解决 即使是在同一数据集的同一张图像上,在不同时刻运行ORB-SLAM3,提取的特征点位置或数量都会存在一定随机性。比如我们要在第0帧上提取10000个特征点,第一次运行时,系统提取了10002个,第二次运行可能就变成了10004个。虽然这种微小的差异不会对系统运行产生影响,但会给调试带来不便...
直接方法不提取特征,而是直接使用图像中的像素强度,并通过最小化光度误差来估计运动和结构。LSD-SLAM[20]能够利用高梯度像素构建大比例尺半密集地图。然而,地图估计被简化为位姿图,精度低于PTAM和ORB-SLAM[2]。混合系统SVO[23],[24]提取FAST特征,使用直接方法逐帧跟踪特征和任何具有非零强度梯度的像素,并利用重投影...
将Superpoint特征点提取模块整合到系统中,并将其作为唯一的表示形式贯穿始终。此外,在复杂环境中,传统的特征匹配方法经常表现出不稳定性,导致跟踪和建图质量的下降。然而,最近基于深度学习的特征匹配方法的进步已经显示出在复杂环境中实现改进匹配性能的潜力。这些方法利用场景的先验信息和结构细节来增强匹配的有效性。