按自下而上的顺序,分别为数据仓库ETL(Extract-Transform-Load)层、ODS(Operational Data Store)层、CDM(Common Dimensional Model)层和ADS(Application Data Store)层。其中CDM层主要包括DWD层(Data Warehouse Detail)和DWS层(Data Warehouse Summary)两部分。 数据仓库架构图 一、数据仓库ETL/ELT 数据仓库ETL主要用于...
按自下而上的顺序,分别为数据仓库ETL(Extract-Transform-Load)层、ODS(Operational Data Store)层、CDM(Common Dimensional Model)层和ADS(Application Data Store)层。其中CDM层主要包括DWD层(Data Warehouse Detail)和DWS层(Data Warehouse Summary)两部分。 数据仓库架构图 一、数据仓库ETL/ELT 数据仓库ETL主要用于...
按自下而上的顺序,分别为数据仓库ETL(Extract-Transform-Load)层、ODS(Operational Data Store)层、CDM(Common Dimensional Model)层和ADS(Application Data Store)层。其中CDM层主要包括DWD层(Data Warehouse Detail)和DWS层(Data Warehouse Summary)两部分。 数据仓库架构图 一、数据仓库ETL/ELT 数据仓库ETL主要用于...
按自下而上的顺序,分别为数据仓库ETL(Extract-Transform-Load)层、ODS(Operational Data Store)层、CDM(Common Dimensional Model)层和ADS(Application Data Store)层。其中CDM层主要包括DWD层(Data Warehouse Detail)和DWS层(Data Warehouse Summary)两部分。 数据仓库架构图 一、数据仓库ETL/ELT 数据仓库ETL主要用于...
这是一张典型的数据仓库架构图。按自下而上的顺序,分别为数据仓库ETL(Extract-Transform-Load)层、ODS(Operational Data Store)层、CDM(Common Dimensional Model)层和ADS(Application Data Store)层。其中CDM层主要包括DWD层(Data Warehouse Detail)和DWS层(Data ...
数据仓库架构分层设计包括STG(数据缓冲层)、ODS(数据操作层)、DWD(数据明细层)、DWS(主题汇总层)和ADM(数据应用层)。 1、STG层 主要完成业务系统结构化数据引入到数据中台,保留业务系统原始数据,缓冲层设计主要保持和数据源的一致性,不做任何类型转换和数据加工处理,为ODS层提供基础数据服务。
应用层(ADS):应用层主要是各个业务方或者部门基于DWD和DWS建立的数据集市(Data Market, DM),一般来说应用层的数据来源于DW层,而且相对于DW层,应用层只包含部门或者业务方面自己关心的明细层和汇总层的数据。该层主要是提供数据产品和数据分析使用的数据。一般就直接对接OLAP分析,或者业务层数据调用接口了数据应用层...
万字详解数仓分层设计架构 ODS-DWD-DWS-ADS 一、数仓建模的意义,为什么要对数据仓库分层? 只有数据模型将数据有序的组织和存储起来之后,大数据才能得到高性能、低成本、高效率、高质量的使用。 1、分层意义 1)清晰数据结构:每一个数据分层都有它的作用域,这样我们在使用表的时候能更方便地定位和理解。
分别是ODS、DWD、DIM、DWS、DWT、以及ADS层。其中除了ADS层(数据应用层、报表应用层指标计算存储)不涉及建模以外。其他均涉及建模工作。 三、ODS层 1、ODS层设计要点 这层又叫“贴源层”,存储来自多个业务系统、前端埋点、爬虫获取等的一系列数据源的数据。我们主要做三件事: ...
DW层又细分为维度层(DIM)、明细数据层(DWD)和汇总数据层(DWS),采用维度模型方法作为理论基础, 可以定义维度模型主键与事实模型中外键关系,减少数据冗余,也提高明细数据表的易用性。在汇总数据层同样可以关联复用统计粒度中的维度,采取更多的宽表化手段构建公共指标数据层,提升公共指标的复用性,减少重复加工。