基于MATLAB的Kmeans算法使用手肘法自动寻找最佳聚类数k计算,并制作成GUI计算界面。 GUI界面如下: 点击加载要聚类的数据——点击手肘法计算k值按键——根据生成的不同K值聚类偏差图,获得最佳聚类数k,并在输入参数里设置最佳聚类数k——点击设置Kmeans聚类的重复聚类的次数k1——点击kmeans聚类按键——即可获得聚类的结果...
clf_: for point in k_means.clf_[cat]: pyplot.scatter(point[0], point[1], c=('r' if cat == 0 else 'b')) predict = [[2, 1], [6, 9]] for feature in predict: cat = k_means.predict(predict) pyplot.show() 修改k值即可实现聚几类,不过只能实现1,2 更多类的聚类有待后续挖掘...
10))+randi([1,8],[50,1]);Data=Data(:);Data=Data([end,1:end-1]);Data=reshape(Data,50,[]);% 可以直接将上面部分删掉,然后% Data = []% 自己的数据K=8;% kmeans 分组数CName=compose('Class-%d',1:K);% 将相同组数据放在一起,并计算相关矩阵[Class,Ind]=sort(kmeans(Data,K));...
在MATLAB中,我们可以使用如下的语法来调用kmeans函数: [idx, C] = kmeans(X, k); 其中,输入参数X是一个m×n的矩阵,表示m个n维数据点的集合。k是一个正整数,表示要将数据点分成k个簇。输出参数idx是一个长度为m的向量,表示每个数据点所属的簇的索引。输出参数C是一个k×n的矩阵,表示k个簇的中心点。
常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。 主要聚类算法分类 类别包括的主要算法划分的方法K-MEANS算法(K平均)、K-MEDOIDS算法(K中心点)、CLARANS算法(基于选择的算法)层次的方法BIRCH算法(平衡迭代规约和聚类)、CURE算法(代表点聚类)、CHAMELEON算法(动态模型)基于密度的方法DBSCAN算法(基于...
https://blog.csdn.net/wys7541/article/details/82153844 K-means聚类算法的一般步骤: 初始化。输入基因表达矩阵作为对象集X,输入指定聚类类数N,并在X中随机选取N个对象作为初始聚类中心。设定迭代中止条件,比如最大循环次数或者聚类中心收敛误差
常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。 主要聚类算法分类 类别包括的主要算法划分的方法K-MEANS算法(K平均)、K-MEDOIDS算法(K中心点)、CLARANS算法(基于选择的算法)层次的方法BIRCH算法(平衡迭代规约和聚类)、CURE算法(代表点聚类)、CHAMELEON算法(动态模型)基于密度的方法DBSCAN算法(基于...
kmeans聚类算法matlab kmeans聚类算法欧式距离,一、概念K-means是一种典型的聚类算法,它是基于距离的,是一种无监督的机器学习算法。K-means需要提前设置聚类数量,我们称之为簇,还要为之设置初始质心。缺点:1、循环计算点到质心的距离,复杂度较高。2、对噪声不敏感,
在Matlab中,kmeans函数用于执行k均值聚类算法。它的语法如下:[idx, C] = kmeans(X, k)其中,X是一个m×n的矩阵,表示包含m个样本的数据集,每个样本有n个特征;...
阿里云为您提供专业及时的MATLAB k-means的相关问题及解决方案,解决您最关心的MATLAB k-means内容,并提供7x24小时售后支持,点击官网了解更多内容。