[k, c] = kmeans(X, k) 其中,X是一个m×n的矩阵,表示有m个样本,每个样本有n个特征;k表示要划分的簇数;kmeans函数返回两个参数:k表示每个样本所属的簇号,c表示每个簇的中心点。 三、kmeans函数参数详解 1. X:待聚类数据集 X是一个m×n的矩阵,其中m表示样本数量,n表示特征数量。在使用kmeans函数...
MATLAB中的kmeans函数是一个实用的工具,可以帮助用户轻松实现k-means算法。本文将从以下方面介绍MATLAB中的kmeans函数:函数基本结构、函数参数说明、算法流程和示例代码。 一。函数基本结构: kmeans函数的基本结构如下: [idx, C] = kmeans (X, k) idx是一个列向量,指示数据点属于哪个簇,C是一个k x n矩阵,...
kmeans函数的语法和参数 在MATLAB中,我们可以使用如下的语法来调用kmeans函数: [idx, C] = kmeans(X, k); 其中,输入参数X是一个m×n的矩阵,表示m个n维数据点的集合。k是一个正整数,表示要将数据点分成k个簇。输出参数idx是一个长度为m的向量,表示每个数据点所属的簇的索引。输出参数C是一个k×n的矩...
K-means属于聚类分析中一种基本的划分方法,常采用误差平方和准则函数作为聚类准则。主要优点是算法简单、快速而且能有效地处理大数据集。研究和分析了聚类算法中的经典K-均值聚类算法,总结出其优点和不足。重点分析了K-均值聚类算法对初始值的依赖性,并用实验验证了随机选取初始值对聚类结果的影响性。根据传统的K-mean...
调用kmeans函数的语法是: [idx, C] = kmeans(X, k) 其中: X是一个大小为m×n的矩阵,每行代表一个样本,每列代表一个特征。 k是要进行聚类的簇数。 函数返回两个输出参数: idx是一个大小为m×1的向量,代表每个样本的簇索引。 C是一个大小为k×n的矩阵,代表每个簇的中心。
Matlab函数kmeans K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小。 使用方法: Idx=Kmeans(X,K) [Idx,C]=Kmeans(X,K) [Idx,C,sumD]=Kmeans(X,K) [Idx,C,sumD,D]=Kmeans(X,K)
[idx c] = kmeansOfMy(data,k); c = dataRecovery(c,me,va);%画出各个区域中的散点count =0;fori=1: kifi==1plot(data1(idx ==i,1),data1(idx ==1,2),'r*');elseifi==2plot(data1(idx ==i,1),data1(idx ==i,2),'g*');elseifi==3 ...
k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是, 预将数据分为K组,则随机选取K个对象作为初始的聚类中心, 然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。 每分配一个样本,聚类的聚类中心会...
常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。 主要聚类算法分类 聚类算法的性能比较 由表可得到以下结论:1)大部分常用聚类算法只适合处理数值型数据;2)若考虑算法效率、初始聚类中心影响性和对异常数据敏感性,其中BIRCH算法、CURE算法以及STING算法能得到较好的结果;3)CURE算法、DBSCAN算法以及ST...
在Matlab中,kmeans函数用于执行k均值聚类算法。它的语法如下:[idx, C] = kmeans(X, k)其中,X是一个m×n的矩阵,表示包含m个样本的数据集,每个样本有n个特征;...