K-Means算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。 算法大致思路: 1、从给定样本中任选几个点作为初始中心(我取k=2) 2、计算其余点分别和初始中心点的距离,跟哪个初始中心近就跟那个
K-means 聚类算法的理解与案例实战 Think...发表于机器学习 (4)聚类算法之OPTICS算法 1.引言 OPTICS(Ordering points to identify the clustering structure)是一基于密度的聚类算法,OPTICS算法是DBSCAN的改进版本, 因此OPTICS算法也是一种基于密度的聚类算法。在DBCSAN算法… GISer...发表于空间聚类算... 机器学习...
K-means聚类算法(又称K-均值聚类算法),是著名的划分聚类分割方法。该算法具有运算速度快,执行过程简单的优点。 工作原理: 首先随机选取K个点,每个点初始地代表每个簇的聚类中心,然后计算剩余各个样本带到聚类中心的距离,将它赋给最近的簇,接着重新计算每一簇的平均值,整个过程不断重复,如果相邻两次调整没有明显变化...
K-means聚类算法基本思想,首先算法随机选取k个点作为初始聚类中心,然后计算各个数据对象到各聚类中心的距离,把数据对象归到离它最近的那个聚类中心所在的类;对调整后的新类计算新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明数据对象调整结束,聚类准则Jc已经收敛。K-means聚类算法的一个特点是在每次迭代中都要...
K-means算法首先从数据样本中选取K个点作为初始聚类中心;其次计算各个样本到聚类的距离,把样本归到离它最近的那个聚类中心所在的类:然后计算新形成的每个聚类的数据对象的平均值来得到新的聚类中心;最后重复以上步骤,直到相邻两次的聚类中心没有任何变化,说明样本调整结束,聚类准则函数达到最优。 二、K-means聚类算法的...
鉴于K-means算法和人工蜂群算法各自特性,提出一种基于改进人工蜂群的K-means聚类算法IABC-Kmeans。该算法首先对人工蜂群算法进行改进:利用提出的最大最小距离积法初始化蜂群,保证初始点的选择能够尽可能代表数据集的分布特征;在迭代过程中使用新的适应度函数和位置更新公式完成寻优进化。然后将改进后的人工蜂群算法应用到...
1. K-means聚类算法的基本原理 K-means聚类算法是一种迭代求解的聚类分析算法,其基本原理是: 初始随机选定K个对象作为初始聚类中心。 计算每个对象与各个聚类中心之间的距离,将每个对象分配到距离它最近的聚类中心。 聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类中心会根据聚类中现有的对象被重新...
二、k-means聚类算法 2.1 算法原理 在数据相似程度能够通过欧式距离度量时,通过人为设定类别的个数让机器自己去找类别的个数。(如果不能够用欧式距离度量时,也就不能直接使用k-means聚类算法) K -means算法实现的伪代码: function K-Means(输入数据,中心点个数K) ...