各种距离:K-MEANSKmeans算法的缺陷聚类中心的个数K需要事先给定,但在实际中这个K值的选定是非常难以估计的,很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适Kmeans需要人为地确定初始聚类中心,不同的初始聚类中心可能导致完全不同的聚类结果。(可以使用Kmeans++算法来解决)聚类的衡量指标: 聚类k-means 一
function[Idx, Center]=K_means(X, xstart) % K-means聚类 % Idx是数据点属于哪个类的标记,Center是每个类的中心位置 % X是全部二维数据点,xstart是类的初始中心位置 len =length(X); %X中的数据点个数 Idx =zeros(len,1); %每个数据点的Id,即属于哪个类 C1 = xstart(1,:); %第1类的中心位置 ...
1: %BasicKMeans.m主类 2: %x数据源,k聚类数目,nc表示k个初始化聚类中心 3: %cid表示每个数据属于哪一类,nr表示每一类的个数,centers表示聚类中心 4: function [cid,nr,centers] = kmeans(x,k,nc) 5: [n,d] = size(x); 6: % 设置cid为分类结果显示矩阵 7: cid = zeros(1,n); 8: % Mak...
idx=kmeans(X,k,Name,Value) 进一步按一个或多个 Name,Value 对组参数所指定的附加选项 返回簇索引。 例如,指定余弦距离、使用新初始值重复聚类的次数或使用并行计算的次数。 [idx,C]=kmeans(___) 在 k×p 矩阵 C 中返回 k 个簇质心的位置。 [idx,C,sumd]=kmeans(___) 在 k×1 向量 sumd 中...
在MATLAB中进行K-means聚类是一种常见的数据分析方法,用于将数据点分成K个簇,使得同一簇内的数据点相似度较高,不同簇之间的数据点相似度较低。 以下是MATLAB中进行K-means聚类的基本步骤和示例代码: 基本步骤 准备数据集:将数据集存储在一个矩阵中,每一行代表一个样本,每一列代表一个特征。 设置聚类参数:确定要...
在MATLAB中进行kmeans聚类分析,首先需要确定聚类的数量k,然后使用kmeans函数对数据进行聚类。kmeans函数的输入是数据矩阵和聚类数量,输出是每个数据点的聚类标签。 在MATLAB中进行kmeans聚类分析是一个利用无监督学习算法来分组数据的过程,这涉及到将具有相似特征的数据点聚集在一起,下面将深入探讨如何在MATLAB环境中实现...
本文首先阐明了聚类算法的基本概念,介绍了几种比较典型的聚类算法,然后重点阐述了K-均值算法的基本思想,对K-均值算法的优缺点做了分析,回顾了对K-均值改进方法的文献,最后在Matlab中应用了改进的K-均值算法对数据进行了分析。 常用的聚类算法 常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。
函数kmeans 使用迭代算法执行 K 均值聚类,该算法将对象分配给簇,使每个对象到其所在簇质心的距离之和最小。对 Fisher 鸢尾花数据应用该函数时,它将根据鸢尾花标本萼片和花瓣的测量值找到它们的自然分组。使用 K 均值聚类,您必须指定要创建的簇数。 首先,加载数据并调用 kmeans,将所需的簇数设置为 2,并使用平方...
# -*- coding:utf-8 -*- import numpy as np from matplotlib import pyplot class K_Means(object): # k是分组数;tolerance‘中心点误差’;max_iter是迭代次数 def __init__(self, k=2, tolerance=0.0001, max_iter=300): self.k_ = k self.tolerance_ = tolerance self.max_iter_ = max_iter...