下面是K-means算法在Matlab中的代码实现: 1. 初始化簇中心 ``` function [centroids] = initCentroids(X, K) 随机初始化K个簇中心 [m, n] = size(X); centroids = X(randperm(m, K), :); end ``` 2. 分配样本到最近的簇 ``` function [idx] = findClosestCentroids(X, centroids) 根据当前...
本文将介绍kmeans算法的原理和用法,并以matlab中的kmeans代码为例进行演示和讲解。 kmeans算法是一种无监督学习算法,用于将一组数据分成多个簇。其基本思想是通过计算数据点之间的距离,将相似的数据点归为同一簇。kmeans算法的核心是确定簇的个数和簇中心点的位置。 在matlab中,使用kmeans算法可以通过调用kmeans...
K-means算法matlab代码 function [Idx, Center] = K_means(X, xstart) % K-means聚类 % Idx是数据点属于哪个类的标记,Center是每个类的中心位置 % X是全部二维数据点,xstart是类的初始中心位置 len = length(X); %X中的数据点个数 Idx = zeros(len, 1); %每个数据点的Id,即属于哪个类 C1 = xstart...
经过阶段1的聚类后,每个聚类簇内的需求点需求量总和均小于车辆载重,可以分别安排一辆车配送,即通过改进K-Means算法将CVRP转为MTSP。再使用蚁群算法(或其他经典启发式算法) 对每一个聚类簇分别优化配送路径。 2.算法代码 整个算法共包含6个文件,在这里我们只展示其中部分代码,需要完整代码的小伙伴可以在优化算法 | ...
1: %K-means算法主程序 2: k=4; 3: x =[ 1.2126 2.1338 0.5115 0.2044 4: -0.9316 0.7634 0.0125 -0.2752 5: -2.9593 0.1813 -0.8833 0.8505 6: 3.1104 -2.5393 -0.0588 0.1808 7: -3.1141 -0.1244 -0.6811 0.9891 8: -3.2008 0.0024 -1.2901 0.9748 ...
function [index,C,sumd] = Kmeans(sample, k, threshold, n) %K均值算法 %C:k个簇中心 %index:聚类后每个样本的标记 %sumd:样本点到相应的簇心的距离 %sample:需要进行聚类的样本 %k:划分簇的个数 %threshold:差异度阈值 %n最大迭代次数
means聚类算法matlab程序代码clearclcx K-means聚类算法matlab程序代码 clear clc x=[0 0;1 0;0 1;1 1;2 1;1 2;3 2;6 6;7 6;8 6;6 7;7 7;8 7;9 7;7 8;8 8;9 8;8 9;9 9]; z=zeros(2,2); z1=zeros(2,2); z=x(1:2,1:2); % % 寻找聚类中心 while 1 count=zeros(2...
MATLAB函数Kmeans 使用方法: Idx=Kmeans(X,K) [Idx,C]=Kmeans(X,K) [Idx,C,sumD]=Kmeans(X,K) [Idx,C,sumD,D]=Kmeans(X,K) […]=Kmeans(…,’Param1’,Val1,’Param2’,Val2,…) 各输入输出参数介绍: X: N*P的数据矩阵,N为数据个数,P为单个数据维度 ...
K-Means聚类学于此,建议大家学习算法时,去观看对应视频,满意的话可以点个赞什么的。 2.2 原理 K-Means聚类的原理请去b站(参考来源中的链接)上进行学习,讲得很好,这里不再赘述。 二、MATLAB代码 注:个人在up主的github上没找到该算法的代码。 % 清除命令窗口、工作区和所有图形 clear; clc; close all; % ...