当x接近0时,ln(1+x)与x等价,即它们的比值在极限情况下等于1。这个等价关系在数学分析中常用于处理无穷小量的问题。以下是几个常见的等价无穷小量的例子:1. 当x趋近于0时,e^x - 1 约等于 x。2. e^(x^2) - 1 在x趋近于0时,等价于 x^2。3. 1 - cosx 当x趋近于0时,近似为 ...
ln(1+x)等价于x不能用的情况如下。对数函数lnx是以e为底数的函数,当x等于1时,对数函数lnx的值等于0,所以当lnx等于0时,lnx当x=1时它的值为0,再加上实数x,它依然等于这个实数,即等价。等价无穷小的使用条件:被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除的元素...
百度试题 结果1 题目当X趋于0时,ln(1+x)等价于() A.1+x B.1-1/2x C.x D.1+lnx A. 1+x B. 1-x C. x D. 1+lnx 相关知识点: 试题来源: 解析 C 用洛必达定理可得 反馈 收藏
无穷小只有在乘除的时候才可以换掉,这里是加减,当然不能换,因为存在高阶无穷小
一阶导是2x/(1+x²),把0一代,是0,二阶导是[2(1+x²)-4x²]/(1+x²)²=2(1-x²)/(1+x²)²,把x=0代入得2.所以,它的二阶展开式应该是x²+o(x²).根据等价无穷小,ln(1+x²)确实是等价于x²的。
1、关于为什么lnx等价于x-1,等价的理由见上图。2.对于等价问题,前提必须是无穷小函数。所以,lnx等价于x-1,必须给出自变量x趋于1的条件,这样,x-1才趋于0,即x-1是无穷小。3.此题为什么lnx等价于x-1,主要是用到等价公式,即我图中第一行等价公式。具体的为什么lnx等价于x-1,详细解的...
结论是,当x趋近于0时,ln(1+x)与x的等价关系为ln(1+x)~x。这个等价无穷小可以推广到ln(1+x^n)~x^n,其中n为任意正整数。对于对数函数,ln(MN)=lnM+lnN,ln(M/N)=lnM-lnN,以及ln(M^n)=nlnM,这些规则对于M和N大于0时成立。值得注意的是,ln(M+N)和ln(M-N)的等价关系并不...
所以说原题x一|n1十X等价于X。lnx等价无穷小公式大全:lnx的等价无穷小是1具体回答如下:当x->0时,ln(1+x)~xlim(x->0)ln(1+x)/x=lim(x->0)ln[(1+x)^(1/x)]根据两个重要极限之一,lim(x->0)(1+x)^(1/x)=e,得:=lne=1求极限时,使用等价无穷小的条件:...
因为lim(x-->0)[ln(1+x)]/x=lim(x-->0)1/(1+x) 【罗比达法则】=1。所以x-->0时,ln(1+x)与为等价x无穷小量。设有两个命题p和q,如果由p作为条件能使得结论q成立,则称p是q的充分条件;若由q能使p成立则称p是q的必要条件;如果p与q能互推(即无论是由q推出p还是p推出q都...
1+x不和ln(1+x)等价,而是当x—>0时,ln️️️️(1+X)与x等价。这是因为 lim[x—>0]ln(1+x)/x =lim[x—>0]ln(1+x)^(1/x)=ln e =1