ln|x|是不是1/..原函数存在定理为:若f(x)在[a,b]上连续,则必存在原函数。此条件为充分条件,而非必要条件。即若fx)存在原函数,不能推出f(x)在[a,b]上连续。由于初等函数在有定义的区间上都是连续的,故初等
ln(1+x) =x-x²/2+x³/3+……+(-1)^(n-1) * x^n/n+...x=0 LS=ln1=0 RS = 0 这里的n是从0开始的正整数,与x应该无关,题中写的只是当x取0时的ln(1+x)的结果。在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已...
这个好做啊 其实当x相等时,函数ln(x+1)是大于lnx的,但是做函数y=ln(x+1)-lnx,当x越来越大的时候,y是趋向于0的,所以x无限大的时候,ln(x+1)差不多与lnx相等,由于y轴上,的刻度也是比较大的,所以你观察的时候就是重合的了。将y的刻度缩小,就可以看到其实ln(x+1)大于lnx...
x趋于0,ln(1+x)与x是等价无穷小 这是因为:令 g(x) = ln(1+x),g(0) = 0;[ln(1+x)] ' = 1 / (1+x),g'(0) = 1;[ln(1+x)] '' = -1 / (1+x)^2,g''(0) = -1;[ln(1+x)] ''' = 2 /...
x→∞时,ln(1+1/x)是关于 x 的低阶无穷大。相关介绍:自然对数以常数e为底数的对数,记作lnN(N>0)。在物理学,生物学等自然科学中有重要的意义。一般表示方法为lnx。数学中也常见以logx表示自然对数。若为了避免与基为10的常用对数lgx混淆,可用“全写”㏒ex。数学讲求规律和美学,可是圆周率π...
1+x)/x写成ln[(1+x)^(1/x)]的形式,以便应用极限运算。4. 根据一个重要的极限定理,lim(x->0) (1+x)^(1/x)等于自然对数的底e。5. 因此,lim(x->0) ln(1+x)/x等于lim(x->0) ln(e),结果为1。6. 这表明ln(1+x)和x是等价无穷小,即它们在x趋近于0时的行为相同。
1. 要证明ln(1+x)和x是等价无穷小,我们首先考虑极限lim(x→0)ln(1+x)/x。2. 使用洛必达法则(L'Hôpital's Rule)计算这个极限,我们得到lim(x→0)(1/(1+x))。3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向...
当x>-1时,ln(1+x)>x;当x要比较x和ln(1+x)的大小,可以考虑两者的定义域。对于x,可以是任意实数,对于ln(1+x),定义域是x>-1。当x>-1时,ln(1+x)是一个递增函数,随着x的增大,ln(1+x)的值也会增大。当x=-1时,ln(1+x)=ln(0)是无定义的。当x-1时,ln(1+x)的值会...
ln(1+x)和x比较大小,在定义域为R上 y=ln(1+x)的定义域为1+x>0,即x>-1;y=x定义域是R;因此只能在(-1,+∞)比较.y'=1/(1+x),故y'(0)=1;即y=ln(1+x)在(0,0)处的切线与直线y=x重合;而当x≠0时曲线y=ln(1+x)都 在直线y=x的下面.故可断言:x=0时ln(1+x)=x...
所以,只有当 x>-1 时,我们才能讨论 ln(1+x) 的正负性。对于 x>-1,ln(1+x) 的最小值为 0(当 x=0 时),随着 x 的增大,ln(1+x) 的值大于 0。综上,不能简单地说 x 大于 0 时,ln(1+x) 一定小于 0。而是当 x>-1 时,ln(1+x) 的最小值为 0,随着 x 的增大,ln...