2.K-Means聚类算法的缺点包括:需预先设定K值:K值需要在聚类前确定,且结果对此敏感。对异常值敏感:异常值和噪声可能会对聚类结果产生较大影响。可能收敛到局部最小值:算法可能会收敛到局部最小值,而不是全局最小值,这取决于初始中心的选择。假设聚类为凸形状和相似大小:对于非球形或大小差异很大的聚类,性能可能会...
百度试题 题目k-Means的主要缺点有 A.K值的选取不好把握B.对于不是凸的数据集比较难收敛C.速度慢D.结果准确率低相关知识点: 试题来源: 解析 A,B 反馈 收藏
缺点解释:k-means算法主要基于欧氏距离来计算样本之间的距离,因此它更适合处理球形或椭球形的类簇。对于非凸形状的类簇,k-means算法的识别效果可能会较差。 改进方法:对于非凸形状的类簇,可以尝试使用基于密度的聚类算法,如DBSCAN算法。这类算法不依赖于样本之间的距离度量,而是基于样本的密度分布来进行聚类,因此更适...
对初始值敏感:K-means算法对初始聚类中心的选择非常敏感,不同的初始值可能会导致不同的聚类结果。这意味着算法的稳定性较差,容易陷入局部最优解。 对异常值和噪声敏感:由于K-means算法是基于距离进行聚类的,因此当数据集中存在异常值或噪声时,可能会导致聚类效果变差。 K-means算法的改进方法: 使用K-means++初始化...
K-Means聚类的主要缺点有:()A.聚类效果依赖于聚类中心的初始化B.对于非凸数据集或类别规模差异太大的数据效果不好C.对噪音和异常点敏感D.K值很难确定E.原理复
·主要需要调参的参数仅仅是簇数k。算法缺点:·在K-means 算法中 K 是事先给定的,K 值的选定难以...
k-means算法的优、缺点 1、优点: ①简单、高效、易于理解 ②聚类效果好 2、缺点: ①算法可能找到局部最优的聚类,而不是全局最优的聚类。使用改进的二分k-means算法。 ②算法的结果非常依赖于初始随机选择的聚类中心的位置,可以通过多次执行该算法来减少初始中心敏感的影响。方法1:选择彼此距离尽可能远的k个点作...
KMeans是个简单实用的聚类算法,这里对KMeans的优缺点做一个总结: 优点: 原理简单,实现容易,收敛速度快。 聚类效果较优。 算法的可解释度强。 主要需要调参的参数仅仅是簇数k。 缺点: K值的选取不好把握。 对于不是凸的数据集比较难收敛。 如果各隐含类别的数据不平衡,比如各隐含类别的数据量严重失衡,或者各隐...
尽管k-means聚类算法有许多优点,但也存在一些缺点。首先,k-means对初始聚类中心点的选择较为敏感,不同的初始点可能导致不同的聚类结果。其次,k-means对数据集的分布要求较高,对异常值和噪声敏感,容易受到极端值的影响。此外,k-means要求将每个数据点都分配到一个簇中,导致结果可能不够灵活,对于非凸形状的簇识别...
简述k-means算法,层次聚类算法的优缺点。 正确答案 (1)k-means算法: 优点:算法描述容易,实现简单快速 不足: 簇的个数要预先给定 对初始值的依赖极大 不适合大量数据的处理 对噪声点和离群点很敏感 很难检测到“自然的”簇(2)层次聚类算法: BIRCH算法: 优点:利用聚类特征树概括了聚类的有用信息,节省内存空...