k-means算法的优点主要有:A.算法简单、经典B.当聚类的每个簇是密集的,且簇与簇之间区别特别明显时,其聚类效果较好C.处理大数据集时是高效的,并且具有较好的可伸缩性
百度试题 结果1 题目k-means聚类算法的优点()A、算法快速、简单B、对大数据集有较高的效率并且是可伸缩性的C、时间复杂度近于线性,而且适合挖掘大规模数据集D、聚类中心能迅速确定 相关知识点: 试题来源: 解析 A;B;C 反馈 收藏
综上所述,K-means算法具有简单快速、高效可伸缩、可解释性强等优点,但也存在K值难以确定、对初始值敏感、对非凸形状聚类效果不佳、易受噪声和孤立点影响以及数据类型限制等缺点。在实际应用中,需要根据具体的数据集和需求选择合适的聚类算法。
百度试题 题目K-Means算法的优点包括 A.简单,易于理解和实现B.时间复杂度低C.精度高D.能自动识别聚类个数相关知识点: 试题来源: 解析 ABC 反馈 收藏
K-Means聚类算法的优点有( )A.算法中聚类个数K是事先给定的,K的选定是非常难以估计的B.算法和结果都简单易懂C.对大数据集有较高的效率并且是可伸缩性的D.用K-
K-means算法的优点: 简单直观:K-means算法原理简单,实现起来也相对容易,对于初学者来说是一个很好的入门算法。 计算效率高:当数据集较大时,K-means算法能够相对快速地完成聚类任务,适用于处理大规模数据集。 可解释性强:每个聚类中心都可以被看作是一个典型的样本,这有助于我们理解数据的分布和结构。 K-means算...
(1)k-means算法: 优点:算法描述容易,实现简单快速 不足: 簇的个数要预先给定 对初始值的依赖极大 不适合大量数据的处理 对噪声点和离群点很敏感 很难检测到“自然的”簇(2)层次聚类算法: BIRCH算法: 优点:利用聚类特征树概括了聚类的有用信息,节省内存空间;具有对象数目呈线性关系,可伸缩性和较好的聚类质量...
1. k-means聚类算法的优点是什么? k-means聚类算法是一种简单而高效的聚类方法,对于大数据集有较好的扩展性和效率。它易于实现并且计算量相对较小,因此在处理大规模数据时十分有效。此外,k-means算法的结果易于解释,能够快速收敛,适用于很多不同类型的数据集。
以下哪一项属于k-means算法的优点A.可以处理噪声和离群点B.可以发现非凸形状的簇C.效率较高D.不必事先知道划分为几个簇
百度试题 题目K-means聚类算法的优点是() A.快速简单B.K要事先给定C.K值的选定容易估计D.不用采用距离作为评价指标相关知识点: 试题来源: 解析 A 反馈 收藏