Pre: node 先, Inorder: node in, Postorder: node 最后 Recursive method 实际上代码是一样, 就是把ans.append(root.val) 放在如上表先, 中, 后就是pre, in, post order了. 1) PreOrder traversal ans =[]defpreOrder(self, root):ifnotroot:returnans.append(root.val)preOrder(root.left) preOrd...
preorder,inorder,postorder 前序遍历preorder:根左右 var preorder = function(root) { var res = []; helper(root,res); return res; }; var helper = function(root,res){ if(root){ res.push(root.val); //根 root.children.map(child=>helper(child,res)) //左右 } } 中序遍历inorder func...
inorder 和postorder共同点就是他们从右往左能够找到最右边的treenode,而preorder 和inorder共同点就是他们能够找到最左边的treenode,所以从左往右开始递归。 最后一个相似的题就是给你preorder, postorder, 让你重建tree,preorder: root, left, right. postorder: left, right, root. 这时候你依然发现可以从左...
Given a binary tree, return theinorder, preorder, postordertraversal of its nodes' values. Example: Input: [1,null,2,3] 1 \ 2 / 3 inorder Output: [1,3,2] preorder Output: [1,2,3] postorder Output: [3,2,1] 这三个题目的思路及总结都在LeetCode questions conlusion_InOrder, Pr...
; Preorder(node->Left()); Preorder(node->Right()); } } void Tree:: Inorder(Node* Root) { if(Root != NULL) { Inorder(Root->Left()); cout << Root->Key() << endl; Inorder(Root->Right()); } } void Tree:: Postorder(Node* Root) { ...
preorder_visit(node_a);//先序 Console.WriteLine(); inorder_visit(node_a);//中序 Console.WriteLine(); postorder_visit(node_a);//后序 Console.WriteLine(); node node_1 =newnode("1"); node node_2 =newnode("2"); node node_3 =newnode("3"); ...
判断postorder和上面判断preorder是一模一样的,最后一个是root,然后从头到尾扫,如果当前的值大于root,则判断左边和右边部分是否是BST, 并且判断右边所有的值都大于root。 1publicboolean verifyPostorder(int[] preorder) {2returnverifyPostorder(preorder,0, preorder.length -1);3}45publicboolean verifyPostorder(...
preorder_visit(node_a);//先序 Console.WriteLine(); inorder_visit(node_a);//中序 Console.WriteLine(); postorder_visit(node_a);//后序 Console.WriteLine(); node node_1 =newnode("1"); node node_2 =newnode("2"); node node_3 =newnode("3"); ...
我们可以通过以下步骤来打印 Postorder 遍历: 根据Preorder 遍历选取当前节点作为根节点。 在Inorder 遍历中查找根节点,并确定左子树和右子树。 递归地处理左子树。 递归地处理右子树。 输出根节点的数据。 其中,步骤1到步骤4是递归的。当我们处理完整棵树时,即可得到 Postorder 遍历序列。 代码示例 下面是用 Python...
preorder: root-left-rightinorder: left-root-rightpostorder: left-right-root