} 中序遍历inorder function inOrder(root,arr=[]){ if(root){ inOrder(root.left,arr) arr.push(root.val) inOrder(root.right,arr) } return arr; } 后序遍历postorder:左右根 var postorder = function(root) { var res = []; helper(root,res); return res; }; var helper = function(root,...
//中序遍历-LDR staticvoidinorder_visit(node Anode) { if(Anode.hasleftchild) { inorder_visit(Anode.leftchild); } Console.Write(Anode.nodevalue); if(Anode.hasrightchild) { inorder_visit(Anode.rightchild); } } //后续遍历-LRD staticvoidpostorder_visit(node Anode) { if(Anode.hasleftchild)...
Preorder, Inorder, and Postorder Iteratively Summarization[1] 1.Pre Order Traverse 1publicList<Integer>preorderTraversal(TreeNode root) {2List<Integer> result =newArrayList<>();3Deque<TreeNode> stack =newArrayDeque<>();4TreeNode p =root;5while(!stack.isEmpty() || p !=null) {6if(p !
inorder 和postorder共同点就是他们从右往左能够找到最右边的treenode,而preorder 和inorder共同点就是他们能够找到最左边的treenode,所以从左往右开始递归。 最后一个相似的题就是给你preorder, postorder, 让你重建tree,preorder: root, left, right. postorder: left, right, root. 这时候你依然发现可以从左...
Postorder与Inorder很相似,但是比Inorder复杂的地方是如何判断该节点的左右子树都已经访问过了,按照Inorder的写法左子树还是先被访问,没有问题,但是访问完左子树后不能直接访问当前节点,要判断当前节点的右子树是否已经被访问,如果没有访问则应该继续去访问右子树,最后再访问当前节点 ...
inorder_visit(node_a);//中序 Console.WriteLine(); postorder_visit(node_a);//后序 Console.WriteLine(); node node_1 =newnode("1"); node node_2 =newnode("2"); node node_3 =newnode("3"); node node_4 =newnode("4");
Inorder , Preorder and Postorder traversals我编写了一个C程序来输入二进制搜索树的元素,并显示其InOrder,PostOrder和PreOrder遍历。[cc lang=c]#include...
Verify Inorder Sequence in Binary Search Tree 判断array是否递增。 Verify Postorder Sequence in Binary Search Tree 判断postorder和上面判断preorder是一模一样的,最后一个是root,然后从头到尾扫,如果当前的值大于root,则判断左边和右边部分是否是BST, 并且判断右边所有的值都大于root。
Inorder(Node* ); void Postorder(Node* ); void Preorder(Node* node); private: void addNode(string key, Node* leaf); void freeNode(Node* leaf); }; // Constructor Tree::Tree() { root = NULL; } // Destructor Tree::~Tree() { freeNode(root); } /...
Binary tree traversal: Preorder, Inorder, and Postorder In order to illustrate few of the binary tree traversals, let us consider the below binary tree: Preorder traversal: To traverse a binary tree in Preorder, following operations are carried-out (i) Visit the root, (ii) Traverse the le...