将inorder代码分为左子树和右子树两部分。 递归地将左子树的inorder代码转换为preorder代码,并将结果添加到新数组中。 递归地将右子树的inorder代码转换为preorder代码,并将结果添加到新数组中。 返回新数组作为preorder代码。 要将inorder代码转换为postorder代码,我们可以按照以下步骤进行操作: 取出inorder代码的最后...
inorder 和postorder共同点就是他们从右往左能够找到最右边的treenode,而preorder 和inorder共同点就是他们能够找到最左边的treenode,所以从左往右开始递归。 最后一个相似的题就是给你preorder, postorder, 让你重建tree,preorder: root, left, right. postorder: left, right, root. 这时候你依然发现可以从左...
下面是一个示例代码,用于从inOrder和preOrder返回postOrder树: 代码语言:txt 复制 class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def buildTree(inOrder, preOrder): if not inOrder or not preOrder: return None # 根...
function inOrder(root,arr=[]){ if(root){ inOrder(root.left,arr) arr.push(root.val) inOrder(root.right,arr) } return arr; } 后序遍历postorder:左右根 var postorder = function(root) { var res = []; helper(root,res); return res; }; var helper = function(root,res){ if(root){ ...
printf("Inorder traversal:the elements in the tree are"); inorder(root); printf(" Preorder traversal:the elements in the tree are"); preorder(root); printf("Postorder traversal:the elements in the tree are"); postorder(root); return 0; } void insert(struct tnode ** tree,int num) ...
Preorder, Inorder, and Postorder Iteratively Summarization[1] 1.Pre Order Traverse 1publicList<Integer>preorderTraversal(TreeNode root) {2List<Integer> result =newArrayList<>();3Deque<TreeNode> stack =newArrayDeque<>();4TreeNode p =root;5while(!stack.isEmpty() || p !=null) {6if(p !
preorder_visit(node_a);//先序 Console.WriteLine(); inorder_visit(node_a);//中序 Console.WriteLine(); postorder_visit(node_a);//后序 Console.WriteLine(); node node_1 =newnode("1"); node node_2 =newnode("2"); node node_3 =newnode("3"); ...
Pre: node 先, Inorder: node in, Postorder: node 最后 Recursive method 实际上代码是一样, 就是把ans.append(root.val) 放在如上表先, 中, 后就是pre, in, post order了. 1) PreOrder traversal ans =[]defpreOrder(self, root):ifnotroot:returnans.append(root.val)preOrder(root.left) ...
前序Preorder: 先访问根节点,然后访问左子树,最后访问右子树。子树递归同理 中序Inorder: 先访问左子树,然后访问根节点,最后访问右子树. 后序Postorder:先访问左子树,然后访问右子树,最后访问根节点. classNode:def__init__(self,key):self.left=Noneself.right=Noneself.val=keydefprintInorder(root):ifroot...
preorder_visit(node_a);//先序 Console.WriteLine(); inorder_visit(node_a);//中序 Console.WriteLine(); postorder_visit(node_a);//后序 Console.WriteLine(); node node_1 =newnode("1"); node node_2 =newnode("2"); node node_3 =newnode("3"); ...