Inorder , Preorder and Postorder traversals我编写了一个C程序来输入二进制搜索树的元素,并显示其InOrder,PostOrder和PreOrder遍历。 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778...
node_e.assignchild(node_h, node_i); preorder_visit(node_a);//先序 Console.WriteLine(); inorder_visit(node_a);//中序 Console.WriteLine(); postorder_visit(node_a);//后序 Console.WriteLine(); node node_1 =newnode("1"); node node_2 =newnode("2"); node node_3 =newnode("3"...
前序遍历preorder:根左右 var preorder = function(root) { var res = []; helper(root,res); return res; }; var helper = function(root,res){ if(root){ res.push(root.val); //根 root.children.map(child=>helper(child,res)) //左右 } } 中序遍历inorder function inOrder(root,arr=[]...
node_e.assignchild(node_h, node_i); preorder_visit(node_a);//先序 Console.WriteLine(); inorder_visit(node_a);//中序 Console.WriteLine(); postorder_visit(node_a);//后序 Console.WriteLine(); node node_1 =newnode("1"); node node_2 =newnode("2"); node node_3 =newnode("3"...
返回新数组作为postorder代码。 这样,我们就可以将给定的inorder代码转换为preorder和postorder代码。 以下是腾讯云相关产品和产品介绍链接地址: 腾讯云云服务器(CVM):https://cloud.tencent.com/product/cvm 腾讯云云数据库 MySQL 版:https://cloud.tencent.com/product/cdb_mysql ...
Preorder, Inorder, and Postorder Iteratively Summarization[1] 1.Pre Order Traverse 1publicList<Integer>preorderTraversal(TreeNode root) {2List<Integer> result =newArrayList<>();3Deque<TreeNode> stack =newArrayDeque<>();4TreeNode p =root;5while(!stack.isEmpty() || p !=null) {6if(p !
postorder: left right root 今天重新做了buildTree 系列,从inorder, postorder中buildTree。 从inorder, preorder 中buildtree。 还有从preorder, postorder中buildtree。这三种方式都遵循着一个思想,就是他们是从recursion 建立的数组,那么inorder 就必须left root right, postorder 就必须left right root, 那么post...
Postorder与Inorder很相似,但是比Inorder复杂的地方是如何判断该节点的左右子树都已经访问过了,按照Inorder的写法左子树还是先被访问,没有问题,但是访问完左子树后不能直接访问当前节点,要判断当前节点的右子树是否已经被访问,如果没有访问则应该继续去访问右子树,最后再访问当前节点 ...
PostOrder表达式的计算可以通过使用栈来实现。遍历Inorder/Infix表达式,当遇到操作数时,将其压入栈中;当遇到操作符时,从栈中弹出两个操作数进行计算,并将结果再次压入栈中。最后,栈中剩下的元素即为PostOrder表达式的计算结果。 PreOrder表达式: PreOrder表达式...
Binary tree traversal: Preorder, Inorder, and Postorder In order to illustrate few of the binary tree traversals, let us consider the below binary tree: Preorder traversal: To traverse a binary tree in Preorder, following operations are carried-out (i) Visit the root, (ii) Traverse the le...