这就是AI模型在少样本学习中的真实处境——它们就像初到地球的外星人,需要你通过精心设计的"提示词"来引导认知。今天我们就来聊聊如何用Few-Shot Prompt设计,让AI用最少的学习样本实现最精准的理解。示例选择:AI也需要"营养均衡"#案例1:假设我们要让AI学会判断餐厅评论的情感倾向错误示范:...
Prompt任务(Prompt Tasks) 通过设计提示(prompt)模板,实现使用更少量的数据在预训练模型(Pretrained Model)上得到更好的效果,多用于:Few-Shot,Zero-Shot 等任务。 1.背景介绍 prompt 是当前 NLP 中研究小样本学习方向上非常重要的一个方向。举例来讲,今天如果有这样两句评论: 什么苹果啊,都没有苹果味,怪怪的味道...
在图像识别领域,few-shot prompt可以帮助模型识别特定类别的图片,即使只提供了极少的示例。在语音识别领域,few-shot prompt也可以帮助模型理解并生成特定的语音内容。 3. few-shot prompt的写法 在进行few-shot prompt的写作时,首先需要明确示例的数量和类型。如果要让模型生成一篇关于科技发展的文章,可以提供几篇相关...
我们现在做一个角色转换,如果我们给大模型一个定型的文章格式和内容,它是否能像诸葛亮一样根据示例产出类似的prompt? 于是Prompt的作用就凸显出来了,他需要提供给模型一个合适的prompt,进而指导大模型生成最为匹配的应答。 合适prompt文本在此情况下需要一个轻量化的方法论框架,Few-shot Prompt就是这个类型的框架,它...
举个例子,我们可以给 ChatGPT 一个简短的 prompt,比如 描述某部电影的故事情节,它就可以生成一个关于该情节的摘要,而不需要进行电影相关的专门训练。2.1 Zero-Shot Prompting 缺点 但这个技术并不是没有缺点的:Zero-Shot Prompting 技术依赖于预训练的语言模型,这些模型可能会受到训练数据集的限制和偏见。比如...
举个例子,我们可以给 ChatGPT 一个简短的 prompt,比如,它就可以生成一个关于该情节的摘要,而不需要进行电影相关的专门训练。 2.1 Zero-Shot Prompting 缺点 但这个技术并不是没有缺点的: Zero-Shot Prompting 技术依赖于预训练的语言模型,这些模型可能会受到训练数据集的限制和偏见。比如在使用 ChatGPT 的时候,它...
通过设计提示(prompt)模板,实现使用更少量的数据在预训练模型(Pretrained Model)上得到更好的效果,多用于:Few-Shot,Zero-Shot 等任务。 1.背景介绍 prompt 是当前 NLP 中研究小样本学习方向上非常重要的一个方向。举例来讲,今天如果有这样两句评论: 什么苹果啊,都没有苹果味,怪怪的味道,而且一点都不甜,超级难吃...
Prompt learning 教学进阶篇:简介Prompt框架并给出自然语言处理技术:Few-Shot Prompting、Self-Consistency等;项目实战搭建知识库内容机器人 1.ChatGPT Prompt Framework 看完基础篇的各种场景介绍后,你应该对 Prompt 有较深的理解。之前的章节我们讲的都是所谓的「术」,更多地集中讲如何用,但讲「道」的部分不多。高...
这时候,Few-Shot Learning(FSL)技术就派上了用场。FSL旨在通过极少的标注样本快速学习新任务。近年来,随着Transformer架构的普及,基于Transformer的FSL方法受到了广泛关注。其中,Few-Shot Prompting(FSP)是一种基于Prompting的方法,它通过少量示例学习新任务,无需从头开始训练模型。百度智能云千帆大模型平台便提供了丰富的...