少样本提示(Few-shot Prompting)是一种利用大语言模型从少量示例样本中学习并处理任务的方法。它的核心思想是利用大语言模型的上下文学习能力,通过在提示中增加“示例样本”来启发大语言模型达到举一反三的效果。这种方法避免了重新训练或者微调模型,是一种非常经济的做法。 让我们看看下面这个纠正错别字的例子。 # 任务描述请对以下每一行文本
编辑注:本文经翻译并二次整理自Few-shot prompting to improve tool-calling performances一文。实验过程我们基于两个数据集进行了实验。第一个数据集是Query Analysis,这是一个标准的设置,通过单一的LLM调用来根据不同的用户问题激活不同的搜索索引。第二个数据集是Multiverse Math,它在更具代理性的工作流ReAct的...
这时候,Few-Shot Learning(FSL)技术就派上了用场。FSL旨在通过极少的标注样本快速学习新任务。近年来,随着Transformer架构的普及,基于Transformer的FSL方法受到了广泛关注。其中,Few-Shot Prompting(FSP)是一种基于Prompting的方法,它通过少量示例学习新任务,无需从头开始训练模型。百度智能云千帆大模型平台便提供了丰富的...
此外,随着技术的进步,我们可能会看到更高效的Few-Shot Prompting 方法出现,如通过强化学习或其他机器学习方法来优化样本来提高模型的适应速度。同时,如何将Few-Shot Prompting 技术与其他技术如迁移学习、无监督学习等结合,也将是未来的一个研究方向。总之,Few-Shot Prompting 技术之道为我们提供了一个全新的视角来看待...
尽管 Zero-Shot Prompting 技术不需要为每个任务训练单独的模型,但为了获得最佳性能,它需要大量的样本数据进行微调。像 ChatGPT 就是一个例子,它的样本数量是过千亿。由于 Zero-Shot Prompting 技术的灵活性和通用性,它的输出有时可能不够准确,或不符合预期。这可能需要对模型进行进一步的微调或添加更多的提示文本...
编辑注:本文经翻译并二次整理自Few-shot prompting to improve tool-calling performances一文。 实验过程 我们基于两个数据集进行了实验。第一个数据集是Query Analysis,这是一个标准的设置,通过单一的LLM调用来根据不同的用户问题激活不同的搜索索引。第二个数据集是Multiverse Math,它在更具代理性的工作流ReAct的...
2.Zero-Shot Prompting 在基础篇里的推理场景,我提到了 Zero-Shot Prompting 的技术,本章会详细介绍它是什么,以及使用它的技巧。Zero-Shot Prompting 是一种自然语言处理技术,可以让计算机模型根据提示或指令进行任务处理。各位常用的 ChatGPT 就用到这个技术。
2.1 Zero-Shot Prompting 缺点 但这个技术并不是没有缺点的: Zero-Shot Prompting 技术依赖于预训练的语言模型,这些模型可能会受到训练数据集的限制和偏见。比如在使用 ChatGPT 的时候,它常常会在一些投资领域,使用男性的「他」,而不是女性的「她」。那是因为训练 ChatGPT 的数据里,提到金融投资领域的内容,多为...
下面是对“few-shot prompting(少样本提示)” 为什么降低了 DeepSeek-R1 性能的几点思考: 干扰模型自身推理路径:DeepSeek-R1 可能已经通过特定的训练方式形成了自己相对稳定的推理模式和逻辑。少样本提示提供了额外的示例,这些示例可能与模型原本学习到的解决问题的方式存在差异。模型在处理这些额外示例时,可能会被引导...
本文将深入探讨 Few-Shot Prompting 技术的核心理念、应用场景以及未来发展趋势。一、Few-Shot Prompting 技术的核心理念Few-Shot Prompting 技术是一种基于人类语言提示的少样本学习方法。其核心理念在于利用预先定义的模板,将少量样本数据中的信息转化为机器可读的形式,从而让机器学习模型快速适应新任务。这种方法巧妙地...