奇偶性是函数的基本性质之一。一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数。一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数。定义 设函数f(x)的定义域D;⑴如果对于函数定义域D内的任意一个x,都有f(-...
是奇函数。也是奇函数。(1)记F(x)=G(x)/H(x), G(x)为奇函数,H(x)为偶函数,如果H(x)有零点,那么也是正负成对的,因此F(x)的定义域仍然关于原点对称。而且F(-x)=G(-x)/H(-x)=-G(x)/H(x)=-F(x)因此F(x)为奇函数。(2)反之也是奇函数。一个偶函数g(x)除以一个...
因为从奇函数定义就已经讲明了,定义域关于原点对称,且f(x)=-f(-x)。这里y是变量,可以看成f(y)=xy,因为f(y)=xy=-x(-y)=-f(-y),所以是奇函数,另一个同理。奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)...
x)是奇函数时,F(-x)=-f[g(x)]=-F(x),F(x)是奇函数;当f(x)是偶函数时,F(-x)=f[g(x)]=F(x),F(x)是偶函数。如果g(x)是偶函数,即g(-x)=g(x) ==> F(-x)=f[g(x)]=F(x),F(x)是偶函数。外奇内奇为奇,外奇内偶为偶,外偶内奇为偶,外偶内偶为偶。
f(-1)=-1或f(-1)=1 ⅰ若f(-1)=-1,那么f(-x)=f(-1)*f(x)=-f(x),f(x)为奇函数(例如f(x)=x)ⅱ若f(-1)=1,那么f(-x)=f(-1)*f(x)=f(x),f(x)为偶函数(例如f(x)=x²)原名题实际上是个假命题,这个函数的奇偶性不确定,我都举例子了,不信你验证一下!
都有f(x)=f(-x),那么函数f(x)就叫做偶函数。偶函数的性质:1、偶函数的图象关于y轴对称;2、在偶函数f(x)中,满足f(-x)=f(x)的条件;3、偶函数在关于原点对称的区间上单调性相反;4、如果一个函数既是奇函数又是偶函数,那么f(x)=0;5、偶函数的定义域关于原点对称。
1.奇函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。2.偶函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。3.特别地:如果对于函数定义域内的任意一个x,都有f(x)=f(-x)和f(-x)=-f(x...
奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数(odd function)。一般地,如果对于函数f(x)的定义域内任意的一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数(Even Function)。性质 1. 两个奇函数相加...
当x=0的时候,如果f(x)有定义,因为f(x)是奇函数,即f(0)=-f(-0)成立,即f(0)=-f(0)成立,得到f(0)=0。当x≠0的时候,因为f(x)是奇函数,有f(x)=-f(-x)成立;因为f(x)也是偶函数,所以f(x)=f(-x)。所以f(x)=-f(-x)和f(x)=f(-x)同时成立,就得到f(x)=-f(...