1、结构:Encoder-Decoder Transformer包含编码器和解码器两个部分,而Decoder-Only Transformer只包含解码器...
为什么采用Decoder-only架构?主要原因:参数效率更高:只需要一个组件而不是完整的Encoder-Decoder自回归生成更自然:更符合人类语言生成的顺序训练更简单:不需要处理复杂的编码器-解码器注意力# Decoder-only架构的核心实现class DecoderOnly(nn.Module): def __init__(self): self.self_a 语言生成 编码器 Transfor...
从BERT的介绍我们已经知道了encoder-only就是所有输出token都能看到过去和未来的所有输入token,这个对于NLU任务天然友好,但是对于seq2seq任务,如机器翻译,这个结构就不是特别匹配,因为比较难直接用做翻译结果的生成 一种直接的办法就是加上decoder做预测生成,这就形成了encoder-decoder架构,如下所示 Classic Transformer B...
除了我们所看到的结合了 encoder 和 decoder 的Transformer 架构之外,BART(Bidirectional Auto-Regressive Transformers)和 T5(Text-To-Text Transfer Transformer)模型也属于此类。 实际上,decoder-only 架构和 encoder-only 架构的应用程序之间的区别有点模糊。例如,GPT 系列中的纯 decoder 模型可以为翻译等任务做好准备...
Transformer的Encoder-Decoder编码器-解码器结构,这种结构被广泛应用于处理序列格式的数据(Seq2Seq);编码器和解码器是其组成部分的核心结构。 编码的过程是一个模式提取的过程,它的作用是把输入句子的特征提取出来;比如句子的文字,语义关系等;而解码的过程是一个模式重建的过程,它是根据编码器获取的模式特征生成新的我...
这种架构的关键在于其Encoder和Decoder的设计,它们协同工作,使得模型能够理解并生成自然语言文本。 一、Encoder:输入序列的编码器 Encoder是Transformer架构中的一部分,主要负责将输入序列(如句子中的单词)转换成内部表示(或称为隐藏表示)。这个过程始于将每个输入单词转换为词嵌入向量,这些向量捕捉了单词的语义信息。然后,...
这样看在Transformer中主要部分其实就是编码器Encoder与解码器Decoder两个部分; 编码器: 编码器部分是由多头注意力机制,残差链接,层归一化,前馈神经网络所构成。 先来了解一下多头注意力机制,多头注意力机制是由多个自注意力机制组合而成。 自注意力机制:
本文深入浅出地解析了Transformer模型中Encoder与Decoder的核心工作机制,通过简明扼要的语言和生动的实例,展示了它们在训练和推理过程中的具体作用与交互方式,帮助读者理解这一革命性自然语言处理架构的精髓。
Decoder:Transformer中的Decoder是用于生成输出序列的模块。它接受Encoder的输出,以及前面已经生成的部分输出序列作为输入。Decoder的主要任务是生成下一个位置的词,直到整个序列生成完成。Decoder同样也是由多层的自注意力机制和全连接层组成,但相比于Encoder还加入了一个额外的注意力机制,用于将Encoder输出的信息融合到生成过...
Transformer 中的 Encoder-Decoder 我们知道,Transformer 中的 Attention 是 Self-Attention (自注意力机制),而且是 Multi-Head Attention (多头注意力机制)。 下图可以看到,Source 是由一系列 <Key, Value> 组成,此时给定 Target 中某个元素 Query,通过计算 Query 和 各个 Key 的相似性,得到每个 Key 对 Value ...