Encoder-Decoder架构同时包含编码器和解码器部分,通常用于序列到序列(Seq2Seq)任务,如机器翻译、文本摘要等。这种架构能够同时处理输入和输出序列,实现复杂的序列转换任务。 工作原理:Encoder-Decoder架构的编码器负责将输入序列编码为固定长度的上下文向量,解码器则根据这个上下文向量生成输出序列。在Transformer模型中,编码器...
基于转换器的模型以棕色显示:蓝色分支中的Decoder-only模型、粉红色分支中的Encoder-only模型和绿色分支中的编码器-解码器模型 在深度学习和自然语言处理(NLP)领域,模型架构可以大致分为三种类型:Encoder-only、Decoder-only 和 Encoder-Decoder。这些架构各有其特点、优势和应用场景。以下是对这三种模型的比较和当前的...
Encoder-Only架构的大模型有谷歌的BERT、智谱AI发布的第四代基座大语言模型GLM4等。其中,BERT是基于Encoder-Only架构的预训练语言模型。GLM4是智谱AI发布的第四代基座大语言模型,该模型在IFEval评测集上,在Prompt提示词跟随(中文)方面,GLM-4达到了GPT-4 88%的水平。 2 Decoder-Only架构 Decoder-Only 架构,也被...
LLMs中有的是只有编码器encoder-only,有的只有解码器decoder-only,有的是2者混合 encoder decoder hybrid。三者都属于Seq2Seq,sequence to sequence。并且字面意思是虽只有编码器encoder,实际上LLMs是能decoder一些文本和token的,也算是decoder。不过由于encoder-only类型的LLM不像decoder-only和encoder-decoder那些有自...
1. 什么是Encoder-only、Decoder-Only 大模型(Large Language Model,LLM),目前一般指百亿参数以上的语言模型,主要面向文本生成任务。而"encoder-only"和"decoder-only"是两种不同的架构,它们都基于Transformer模型,但在处理输入和生成输出的方式上有所不同。
针对encoder-decoder、only-encoder、only-decoder三种架构,它们在推理过程中的不同步骤和方式如下: 1.Encoder-Decoder架构: -输入序列通过编码器(Encoder)进行编码,生成一个上下文向量或隐藏状态。 -上下文向量被传递给解码器(Decoder),并作为其初始状态。 -解码器根据上下文向量和已生成的部分输出,逐步生成目标...
本文深入探讨了Encoder-Decoder与Decoder-Only两种神经网络模型的结构差异、应用场景及技术优势,帮助读者理解两者在自然语言处理中的不同角色与贡献。
Transformer Decoder only 架构和Transformer encoder only架构,心路历程:复现Transformer架构主干网络过程中,感受颇多,以前只是使用相关衍生模型,但是,从来没有深入的研究过Transformer架构的细节处理工作,这几天真的是成长了。这两年第三次复现作者论文,内心感受颇
混合模型:结合Encoder-Only和Decoder-Only的优势,如T5(Text-to-Text Transfer Transformer)和BART(...
实际上,decoder-only 架构和 encoder-only 架构的应用程序之间的区别有点模糊。例如,GPT 系列中的纯 decoder 模型可以为翻译等任务做好准备,这些任务通常被认为是序列到序列的任务。类似地,像 BERT 这样的纯 encoder 模型可以应用于通常与 encoder-decoder 或纯 decoder 模型相关的摘要任务。