GPT(Generative Pre-trained Transformer)系列模型是最典型的 Decoder-only 网络的例子,今天来梳理下Decoder-only 网络和Encoder-Decoder(编码器-解码器)架构之间的区别,并澄清它们各自适用的任务。 编码器-解码器架构 编码器-解码器架构(如标准的 Transformer)由两个主要部分组成:编码器(Encoder)
一、Decoder-Only架构 1.1 定义与特点 Decoder-Only架构,也被称为生成式架构,其核心在于仅包含解码器部分。这种架构的模型擅长于从输入中生成连续的输出序列,如文本生成、机器翻译等。Decoder-Only架构的代表模型包括GPT系列、LLaMA、OPT和BLOOM等。 1.2 工作原理 Decoder-Only架构通过解码器直接处理输入,并基于先前的输...
Encoder-Decoder与Decoder-Only模型各有其独特的优势和适用场景。在实际应用中,我们应根据具体任务的需求和限制选择合适的模型。对于序列到序列转换等复杂任务,Encoder-Decoder模型可能是更好的选择;而对于生成任务等场景,Decoder-Only模型则以其高效、灵活的特点脱颖而出。通过不断探索和优化这些模型,我们有望在自然语言...
1、Decoder-Only 模型 Decoder和Encoder结构之间有什么区别?关键区别在于输入注意力是否(因果)被掩码mask掉。Decoder结构使用的是基于掩码mask的注意力。 设想我们有一个输入句子,“I like machine learning.”。对于基于掩码的因果注意力层来说,每个单词只能看到它的前一个单词。例如对于单词 "machine"来说,解码器只能...
Decoder-only 最近这段时间一直在研究这个大模型的能力到底来源于哪里?对于大模型的是否智能?有像图灵奖得主Yann LeCun这样持反对意见的,也有图灵奖得主Hinton持支持意见的,作为一名从业人员,我们先从模型架构的角度来解剖大模型,看看大模型到底是什么样的?目前大模型基于Transformer,Transformer大家应该都知道,为了写这篇...
Decoder-Only 架构,也被称为生成式架构,仅包含解码器部分。它通常用于序列生成任务,如文本生成、机器翻译等。这种架构的模型适用于需要生成序列的任务,可以从输入的编码中生成相应的序列。同时,Decoder-Only 架构还有一个重要特点是可以进行无监督预训练。在预训练阶段,模型通过大量的无标注数据学习语言的统计模式和语义...
这些模型背后的架构是其强大功能的基石,其中Decoder-Only、Encoder-Only、Encoder-Decoder三种架构尤为引人注目。本文将深入探讨这三种架构的特点、适用场景以及它们各自的优势与局限。 Decoder-Only架构:创造性写作的专家 Decoder-Only架构,以其强大的生成能力而著称,是生成式任务的理想选择。这一架构的代表模型包括GPT...
针对encoder-decoder、only-encoder、only-decoder三种架构,它们在推理过程中的不同步骤和方式如下: 1.Encoder-Decoder架构: -输入序列通过编码器(Encoder)进行编码,生成一个上下文向量或隐藏状态。 -上下文向量被传递给解码器(Decoder),并作为其初始状态。 -解码器根据上下文向量和已生成的部分输出,逐步生成目标...
LLM的3种架构:Encoder-only、Decoder-only、encoder-decoder 个人学习使用, 侵权删 LLM的3种架构:Encoder-only、Decoder-only、encode-decode
Decoder-Only(仅解码器) 1. 定义与用途 Decoder-Only模型则是指那些只包含解码器部分的模型。这类模型通常用于生成输出序列,但它们不依赖于显式的编码器来生成这个序列;相反,它们可能会从某种形式的初始状态或提示开始生成文本。 2. 常见应用 文本生成:如故事创作、对话系统、摘要生成等,其中模型根据给定的上下文或...