Encoder-only是以Bert为代表的模型及其衍生优化版本为主,那就以Bert为例来学习Encoder-only架构;BERT(Bidirectional Encoder Representations from Transformers)是一种在自然语言处理(NLP)领域引起巨大轰动的预训练语言模型,由Google于2018年提出。其核心原理是结合了Transformer架构和双向语言模型预训练策略,使得模型能够更好...
在自然语言处理(NLP)和深度学习领域,特别是在序列到序列(Seq2Seq)的任务中,Encoder-Decoder架构是一种常见的模型结构。这种架构通常包含两个主要部分:Encoder(编码器)和Decoder(解码器)。然而,根据任务需求的不同,有时我们可能只需要使用Encoder或Decoder部分,这就引出了“encoder-only”和“decoder-only”的概念。下...
Encoder-Only架构,也被称为单向架构,仅包含编码器部分,没有解码器。它主要适用于理解任务,如文本分类、情感分析等。代表模型是BERT(Bidirectional Encoder Representations from Transformers),通过双向注意力机制捕捉丰富的上下文信息。 工作原理:Encoder-Only架构利用编码器对输入序列进行编码,提取其特征和语义信息。在BERT...
LLMs中有的是只有编码器encoder-only,有的只有解码器decoder-only,有的是2者混合 encoder decoder hybrid。三者都属于Seq2Seq,sequence to sequence。并且字面意思是虽只有编码器encoder,实际上LLMs是能decoder一些文本和token的,也算是decoder。不过由于encoder-only类型的LLM不像decoder-only和encoder-decoder那些有自...
针对encoder-decoder、only-encoder、only-decoder三种架构,它们在推理过程中的不同步骤和方式如下: 1.Encoder-Decoder架构: -输入序列通过编码器(Encoder)进行编码,生成一个上下文向量或隐藏状态。 -上下文向量被传递给解码器(Decoder),并作为其初始状态。 -解码器根据上下文向量和已生成的部分输出,逐步生成目标...
LLM的3种架构:Encoder-only、Decoder-only、encoder-decoder 个人学习使用, 侵权删 LLM的3种架构:Encoder-only、Decoder-only、encode-decode
AI的未来,我们为什么需要更灵活的计算?:encoder-only/decoder-only/encoder-decoder,并聊聊他们的问题和发展方向美国的牛粪博士 立即播放 打开App,流畅又高清100+个相关视频 更多 5217 2 04:08 App CVPR2025 吐槽大会:你的审稿人到底懂不懂AI?欢迎聊聊你的cvpr投稿经历,让我们一起成长。 378 0 04:45 App ...
在处理512K上下文长度时,标准Transformer内存使用是YOCO的6.4倍,预填充延迟是YOCO的30.3倍,而YOCO的吞吐量提升到标准Transformer的9.6倍。去年一张“大语言模型进化树”动图在学术圈疯转,模型架构还只有三大类:Decoder-Only、Encoder-Only、Encoder-Decoder。那么这个新出的Decoder-Decoder架构到底长啥样?嗯,如...
所谓的“decoder-only(仅解码器)”实际上意味着“自回归编码器-解码器”。“encoder only(仅编码器)” 实际上包含一个编码器和解码器(非自回归),而所谓的“encoder-decoder(编码器-解码器)”真实含义是”自回归编码器-解码器“—— Yann Lecun这个小节会简要介绍常见的不同的大模型的模型架构和用例。目...
1 Encoder-Only架构 Encoder-Only 架构,也被称为单向架构,仅包含编码器部分。它主要适用于不需要生成序列的任务,只需要对输入进行编码和处理的单向任务场景,如文本分类、情感分析等。这种架构的代表是 BERT 相关的模型,例如 BERT、RoBERT 和 ALBERT 等。