Encoder-Only架构,也被称为单向架构,仅包含编码器部分,没有解码器。它主要适用于理解任务,如文本分类、情感分析等。代表模型是BERT(Bidirectional Encoder Representations from Transformers),通过双向注意力机制捕捉丰富的上下文信息。 工作原理:Encoder-Only架构利用编码器对输入序列进行编码,提取其特征和语义信息。在BERT...
1、Decoder-Only 模型 Decoder和Encoder结构之间有什么区别?关键区别在于输入注意力是否(因果)被掩码mask掉。Decoder结构使用的是基于掩码mask的注意力。 设想我们有一个输入句子,“I like machine learning.”。对于基于掩码的因果注意力层来说,每个单词只能看到它的前一个单词。例如对于单词 "machine"来说,解码器只能...
Encoder-Only架构,也称为单向架构,仅包含编码器部分。它主要用于处理那些不需要生成输出序列的任务,如文本分类、情感分析等。Encoder-Only架构的代表模型包括BERT、RoBERTa和ALBERT等。 2.2 工作原理 Encoder-Only架构通过编码器对输入文本进行编码,提取其特征和语义信息,然后将这些信息用于后续的处理任务。由于缺少解码器部...
搞清楚了Bert原理,那为什么说BERT属于Encoder-only模型? 很简单,因为它只使用了Transformer模型中的编码器部分,而没有使用解码器。在Transformer模型中,编码器负责将输入序列转换为上下文感知的表示,而解码器则负责生成输出序列。BERT使用了编码器。只使用编码器最主要的原因:BERT的预训练目标是通过掩盖部分输入来预测其他...
GPT(Generative Pre-trained Transformer)系列模型是最典型的 Decoder-only 网络的例子,今天来梳理下Decoder-only 网络和Encoder-Decoder(编码器-解码器)架构之间的区别,并澄清它们各自适用的任务。 编码器-…
在自然语言处理领域,大语言模型作为核心技术之一,正引领着人工智能的新一轮变革。这些模型背后的架构是其强大功能的基石,其中Decoder-Only、Encoder-Only、Encoder-Decoder三种架构尤为引人注目。本文将深入探讨这三种架构的特点、适用场景以及它们各自的优势与局限。
一、Encoder 家族 第一个基于 Transformer 架构的 encoder-only 模型是 BERT。encoder-only 模型仍然主导着 NLU(Natural Language Understanding)任务(例如文本分类、命名实体识别和问题解答)的研究和行业。接下来简单介绍一下 BERT 模型及其变体: 1. BERT
LLM的3种架构:Encoder-only、Decoder-only、encoder-decoder 个人学习使用, 侵权删 LLM的3种架构:Encoder-only、Decoder-only、encode-decode
针对encoder-decoder、only-encoder、only-decoder三种架构,它们在推理过程中的不同步骤和方式如下: 1.Encoder-Decoder架构: -输入序列通过编码器(Encoder)进行编码,生成一个上下文向量或隐藏状态。 -上下文向量被传递给解码器(Decoder),并作为其初始状态。 -解码器根据上下文向量和已生成的部分输出,逐步生成目标...
AI 人工智能 encoder-decoder decoder-only AI三大架构 encoder-only 美国的牛粪博士 发消息 流浪美国的牛粪博士,分享当今AI时代技术和新闻,同时分享美国的生活。爽玩版!?还需要氪什么!所有东西全靠爆~ 热血高爆 接下来播放 自动连播 盘点一周AI大事(3月2日)|DeepSeek R2即将发布 产品君 1.3万 25 AI拯救...