Transformer的Encoder-Decoder编码器-解码器结构,这种结构被广泛应用于处理序列格式的数据(Seq2Seq);编码器和解码器是其组成部分的核心结构。 编码的过程是一个模式提取的过程,它的作用是把输入句子的特征提取出来;比如句子的文字,语义关系等;而解码的过程是一个模式重建的过程,它是根据编码器获取的模式特征生成新的我...
理解Transformer模型中的Encoder和Decoder是掌握其工作原理的关键。我们可以通过以下几个方面来解释它们: Encoder Encoder的主要任务是将输入序列(通常是文本)转换为一组特征表示(也称为编码)。这些特征表示包含了输入序列的语义信息,供Decoder在生成输出序列时参考。 输入嵌入(Input Embedding):首先,输入的每个单词或符号通...
几乎所有主流的大模型都是基于 Transformer 网络架构构建的,Transformer 的重要性不言而喻。大模型可以类比人类的大脑,那么 Transformer 就可以类比人类大脑中的神经网络结构。 Transformer 网络结构最核心的组成部分为:编码器(Encoder)和解码(Decoder)。 编码器负责提取信息,通过细致分析输入文本,理解文本中各个元素的含义,...
除了我们所看到的结合了 encoder 和 decoder 的Transformer 架构之外,BART(Bidirectional Auto-Regressive Transformers)和 T5(Text-To-Text Transfer Transformer)模型也属于此类。 实际上,decoder-only 架构和 encoder-only 架构的应用程序之间的区别有点模糊。例如,GPT 系列中的纯 decoder 模型可以为翻译等任务做好准备...
这样看在Transformer中主要部分其实就是编码器Encoder与解码器Decoder两个部分; 编码器: 编码器部分是由多头注意力机制,残差链接,层归一化,前馈神经网络所构成。 先来了解一下多头注意力机制,多头注意力机制是由多个自注意力机制组合而成。 自注意力机制:
输入处理:Decoder的输入包括两部分:一是Encoder的输出(即整个输入序列的编码),二是Decoder自身的输入(通常是目标序列的已生成部分,在训练初期可以是目标序列的左移版本,即包含起始符和已知的目标词)。 掩码自注意力(Masked Self-Attention):与Encoder的自注意力不同,Decoder的自注意力机制需要加上一个掩码(Mask),以...
Seq2Seq模型的典型架构是 编码器-解码器(Encoder-Decoder) 结构,编码器和解码器各自都是神经网络。编码器的输出作为原始序列的一种编码;我们将编码器的输出作为解码器的输入,解码器的输出就是我们的目标序列。 输入和输出都是长度可变的向量,编码器输入长度可变的向量,输出一个固定长度的向量;解码器输入编码器的输出...
这种架构的关键在于其Encoder和Decoder的设计,它们协同工作,使得模型能够理解并生成自然语言文本。 一、Encoder:输入序列的编码器 Encoder是Transformer架构中的一部分,主要负责将输入序列(如句子中的单词)转换成内部表示(或称为隐藏表示)。这个过程始于将每个输入单词转换为词嵌入向量,这些向量捕捉了单词的语义信息。然后,...
3.1 编码器(Encoder) 编码器是Transformer的核心组成部分之一,它的主要任务是理解和处理输入数据。编码器通过组合自注意力机制、前馈神经网络、规范化层和残差连接,构建了一个强大的序列到序列的映射工具。自注意力机制使得模型能够捕获序列内部的复杂关系,前馈网络则提供了非线性计算能力。规范化层和残差连接则有助于稳...
[输入序列][输出序列]|^v|+---++---+|编码器部分||解码器部分||(Encoder)|-->|(Decoder)|+---++---+|^v|+---+|自注意力机制||(Self-Attention)|+---+ 4.1 编码器 负责理解输入数据 由多个相同的层堆叠而成 每层包含自注意力机制和前馈神经网络 4.2 解码器 负责生成输出 也有多层结构 比...