下图左侧是encoder,右侧是decoder encoder only 预训练代表 Bert;decoder only 预训练代表 GPT;encode & decode 预训练代表 BART transformer的核心是三种attention。encoder一种attention, decoder两种attention 1.2 attention &self attention self attention 是相对于 attention 的,attention 用于计算两个序列之间的相似度,...
理解Transformer模型中的Encoder和Decoder是掌握其工作原理的关键。我们可以通过以下几个方面来解释它们: Encoder Encoder的主要任务是将输入序列(通常是文本)转换为一组特征表示(也称为编码)。这些特征表示包含了输入序列的语义信息,供Decoder在生成输出序列时参考。 输入嵌入(Input Embedding):首先,输入的每个单词或符号通...
答案就藏在它的Encoder-Decoder架构中。 一、Transformer概览 Transformer模型由两大部分组成:Encoder(编码器)和Decoder(解码器)。简单来说,Encoder负责将输入数据(如一句话)转换成一种中间表示(通常称为embeddings),而Decoder则根据这种中间表示生成目标输出(如另一语言的句子)。这种架构使得Transformer能够处理序列到序列(...
一、Encoder和Decoder的作用 Encoder和Decoder是Transformer模型的两个核心组件,它们共同构成了序列到序列(seq2seq)的学习框架。Encoder的主要任务是处理输入序列,将其转换为一组内部表示(也称为编码),这些内部表示将捕获输入序列中的关键信息。Decoder则负责接收这些内部表示,并生成一个输出序列。输出序列可以是与输入序列...
最初的 Transformer 是基于在机器翻译任务中广泛使用的 encoder-decoder 架构。 如上图所示,encoder 由许多堆叠在一起的 encoder 层组成。 让我们将这些 encoder 层放大。 从上图可以看到,每个 encoder 层接收由 embedding 组成的序列,然后将序列输入子层: ...
这样看在Transformer中主要部分其实就是编码器Encoder与解码器Decoder两个部分; 编码器: 编码器部分是由多头注意力机制,残差链接,层归一化,前馈神经网络所构成。 先来了解一下多头注意力机制,多头注意力机制是由多个自注意力机制组合而成。 自注意力机制:
几乎所有主流的大模型都是基于 Transformer 网络架构构建的,Transformer 的重要性不言而喻。大模型可以类比人类的大脑,那么 Transformer 就可以类比人类大脑中的神经网络结构。 Transformer 网络结构最核心的组成部分为:编码器(Encoder)和解码(Decoder)。 编码器负责提取信息,通过细致分析输入文本,理解文本中各个元素的含义...
decoder主要负责生成(generation) The decoder outputs tokens one by one, where the current output depends on the previous tokens. This process is calledauto-regressivegeneration 基本结构如下: encoder结构和decoder结构基本一致(除了mask),所以主要看decoder即可: ...
Decoder:Transformer中的Decoder是用于生成输出序列的模块。它接受Encoder的输出,以及前面已经生成的部分输出序列作为输入。Decoder的主要任务是生成下一个位置的词,直到整个序列生成完成。Decoder同样也是由多层的自注意力机制和全连接层组成,但相比于Encoder还加入了一个额外的注意力机制,用于将Encoder输出的信息融合到生成过...
最初的Transformer是基于广泛应用在机器翻译领域的Encoder-Decoder架构: Encoder: 将由token 组成的输入序列转成由称为隐藏状态(hidden state)或者上下文(context)的embedding向量组成的序列。 Decoder: 根据Encoder 的隐藏状态迭代生成组成输出序列的 token。