Encoder-Decoder模型在NLP领域的应用 1.机器翻译 机器翻译是Encoder-Decoder模型最为广泛的应用之一。在机器翻译任务中,Encoder-Decoder模型将一个源语言句子映射成一个目标语言句子,其中编码器将源语言句子编码成一个固定长度的向量,解码器将这个向量解码成一个目标语言句子。 在编码阶段,编码器部分的任务是处理输入序列...
在原始的 Transformer 模型中(例如在机器翻译任务中),Encoder 和 Decoder 的注意力掩码策略有所不同,但并不是完全按照 BERT 和 GPT 的双向/单向掩码策略区分的。以下是详细解释: 1. Transformer 中的 Encoder 和 Decoder 的注意力机制 Encoder 的注意力机制: Transformer 的 Encoder 部分通常是全局双向的,每个词可...
Decoder (解码器):“求解数学问题,并转化为现实世界的解决方案” Decoder解码器 Seq2Seq(Sequence-to-sequence):输入一个序列,输出另一个序列 Seq2Seq(序列到序列):强调模型的目的——将输入序列转换为输出序列。 Encoder-Decoder(编码器-解码器):强调模型的实现方法——提供实现这一目的的具体方法或架构。 Seq2S...
这种机制有助于提高解码的准确性和效率,尤其是在处理长序列数据时。 三、Encoder-Decoder框架 Encoder-Decoder框架是一种将编码器和解码器结合使用的通用架构,特别适用于处理序列到序列的任务。该框架首先通过编码器将输入序列转换为编码状态,然后利用解码器根据编码状态和已生成的部分目标序列逐步生成最终的目标序列。 1...
理解Transformer模型中的Encoder和Decoder是掌握其工作原理的关键。我们可以通过以下几个方面来解释它们: Encoder Encoder的主要任务是将输入序列(通常是文本)转换为一组特征表示(也称为编码)。这些特征表示包含了输入序列的语义信息,供Decoder在生成输出序列时参考。 输入嵌入(Input Embedding):首先,输入的每个单词或符号通...
在深度学习的广阔领域中,Encoder(编码器)与Decoder(解码器)作为一对核心组件,广泛应用于自然语言处理(NLP)、图像处理、语音识别等多个领域。它们以独特的双阶段处理方式,即先对输入信息进行编码,再根据编码信息生成输出,为序列到序列(Seq2Seq)学习任务提供了有效的解决方案。本文将深入解析Encoder与Decoder的技术原理,...
本文将从Seq2Seq工作原理、Attention工作原理、Transformer工作原理三个方面,带您一文搞懂Encoder-Decoder工作原理。 Encoder-Decoder工作原理 一、Seq2Seq工作原理 Seq2Seq(Sequence-to-sequence):输入一个序列,输出另一个序列。 在2014年,Cho等人首次在循环神经网络(RNN)中提出了Seq2Seq(序列到序列)模型。与传统的统...
DelimiterBasedFrameDecoder:分隔符解码器,与LineBasedFrameDecoder类似,只不过分隔符可以自己指定 LengthFieldBasedFrameDecoder:长度编码解码器,将报文划分为报文头/报文体,根据报文头中的Length字段确定报文体的长度,因此报文提的长度是可变的 JsonObjectDecoder:json格式解码器,当检测到匹配数量的"{" 、”}”或”[””...
Encoder-decoder是一种常见的神经网络架构,通常用于序列到序列(sequence-to-sequence)的任务,例如机器翻译、文本摘要和对话生成等。 简单来说,encoder-decoder模型由两部分组成:编码器(encoder)和解码器(decoder)。编码器负责将输入序列(例如一个句子)转换为一个固定长度的向量表示,而解码器则根据这个向量表示来生成输出...
encoder 由一堆 encoder 层组成,类似于计算机视觉中堆叠的卷积层。decoder也是如此,它有自己的 decoder 层块。 encoder 的输出被馈送到每隔 decoder 层,然后 decoder 生成序列中最可能的下一个 token 的预测。然后,此步骤的输出被反馈到 decoder 以生成下一个 token,依次类推,直到到达特殊的序列结束(End of Seque...