Encoder-Decoder架构由两部分组成:编码器(Encoder)和解码器(Decoder)。编码器负责将输入序列转换为一个固定长度的向量表示,而解码器则根据这个向量表示生成输出序列。这种架构的优势在于能够处理不同长度的输入和输出序列,并且能够学习到输入序列中的上下文信息。 在机器翻译任务中,Encoder-Decoder架构的应用十分广泛。以将...
应用焦点:自编码器主要用于学习数据的紧凑表示,如降维和去噪;Encoder-Decoder模型专注于将一种形式的序列转换为另一种形式的序列,如语言翻译或语音识别。 输出目标:自编码器的输出旨在尽可能接近输入,而Encoder-Decoder模型的输出是一个完全不同的序列,可能与输入在结构和内容上都有很大差异。 联系: 共享的架构理念:...
Encoder-Decoder 架构,又称编码器-解码器架构,是深度学习中常见的模型框架。这一架构并不是具体的模型,而是一种通用的框架,可以用于处理各种类型的数据,如文字、语音、图像等。在 Encoder-Decoder 架构中,Encoder 负责将输入数据编码成一个固定长度的向量,而 Decoder 则负责将这个向量解码成输出序列。这种架构在许多应...
Encoder-Decoder 在Encoder-Decoder架构中,需要考虑预测的词和输出的词之间的关系的关系,矩阵如下: y1y2y3x1111x2111x3111 Encoder-Decoder架构也被称为Seq2Seq,就是序列到序列,常见的模型有BART、T5、盘古大模型等,多用与对话、翻译等任务。 Encoder对应的掩码矩阵(Mask Matri)如下: 000000000 因为需要关注输入...
Encoder-Decoder架构并不是一个具体的模型,而是一个通用的框架。它包含两个主要部分:Encoder(编码器)和Decoder(解码器)。简单来说,Encoder负责将输入序列(如一句话、一段音频等)编码成一个固定长度的向量(或称为编码状态),而Decoder则根据这个向量生成输出序列。这种架构的核心思想在于将复杂的输入序列转化为一个易于...
encoder-decoder结构encoder-decoder结构 Encoder-Decoder结构是一种深度学习架构,用于机器学习中的自然语言处理(NLP)。它利用一个独特的架构,将不同语义层次编码并解码到另一种语言。 Encoder-Decoder结构由两个主要组件组成:编码器和解码器。编码器是一个神经网络,用来将一段句子或文本从一种语言编码为一系列向量,...
Encoder-Decoder编码器-解码器框架 Encoder-Decoder(编码器-解码器)框架是用于处理序列到序列任务的一种常见架构,尤其在机器翻译领域得到了广泛应用。这种框架包含两个主要组件:编码器(Encoder)和解码器(Decoder)。编码器(Encoder):编码器的任务是接受输入序列,并将其转换为具有固定形状的编码状态。它通过递归...
二、解码器(Decoder)架构剖析 现在轮到解码器承担任务。与编码器不同的是,解码器面临着额外的挑战:在不预见未来的情况下,逐字生成输出。为此,它采用了以下几个策略: 掩蔽自注意力:类似于编码器的自注意力机制,但有所调整。解码器仅关注之前已生成的单词,确保不会利用到未来的信息。这就像是一次只写出一个句子的...
编码器-解码器(Encoder-Decoder)结构 简介: 编码器-解码器(Encoder-Decoder)结构是一种在深度学习和自然语言处理(NLP)、计算机视觉(CV)以及其他领域广泛应用的神经网络架构,它主要用于处理序列到序列(Sequence-to-Sequence,seq2seq)的学习任务。 基本原理:
最初的Transformer是基于广泛应用在机器翻译领域的Encoder-Decoder架构: Encoder: 将由token 组成的输入序列转成由称为隐藏状态(hidden state)或者上下文(context)的embedding向量组成的序列。 Decoder: 根据Encoder 的隐藏状态迭代生成组成输出序列的 token。