Encoder-Decoder架构是一种强大的神经网络模型,主要用于处理序列到序列(Sequence to Sequence, Seq2Seq)任务,如机器翻译、文本摘要等。它在Encoder-only架构的基础上引入了Decoder组件,形成了一个完整的编码-解码系统。 架构组成 该架构主要包含两个核心部分: 1.编码器(Encoder) 由多个编码模块堆叠而成 每个编码模块包...
编码器-解码器模型简介 Encoder-Decoder算法是一种深度学习模型结构,广泛应用于自然语言处理(NLP)、图像处理、语音识别等领域。它主要由两部分组成:编码器(Encoder)和解码器(Decoder)。如图1所示,这种结构能够处理序列到序列(Seq2Seq)的任务,如机器翻译、文本摘要、对话系统、声音转化等。 图1 编码器-解码器结构...
Encoder-Decoder模型的结构包括一个编码器和一个解码器,编码器(Encoder)会先对输入的序列进行处理,然后将处理后的向量发送给解码器(Decoder),转化成我们想要的输出。 举例来说,如果使用Encoder-Decoder模型将中文翻译成英文,其过程就是输入一个中文句子(欢迎来北京),编码成包含一系列数值的向量发送给解码器,再用解码...
在机器学习和自然语言处理(NLP)领域,Encoder-Decoder模型以其独特的双阶段处理方式,即先编码后解码,成为了处理序列到序列(Seq2Seq)任务的重要工具。本文将深入探讨Encoder-Decoder模型的基本原理、优缺点及其在实际应用中的重要作用。 Encoder-Decoder模型概述 Encoder-Decoder模型并非特指某一具体算法,而是一类算法框架的统...
不懂Encoder-Decoder,何以深入序列数据处理?本文将从Seq2Seq工作原理、Attention工作原理、Transformer工作原理三个方面,带您一文搞懂Encoder-Decoder工作原理。 一、Seq2Seq工作原理 Seq2Seq(Sequence-to-sequence):输入一个序列,输出另一个序列。 在2014年,Cho等人首次在循环神经网络(RNN)中提出了Seq2Seq(...
Encoder-decoder 模型在序列到序列的自然语言处理任务(如语言翻译等)中提供了最先进的结果。多步时间序列预测也可以被视为一个 seq2seq 任务,可以使用 encoder-decoder 模型来处理。本文提供了一个用于解决 Kaggle 时间序列预测任务的 encoder-dec...
模型原理。 Encoder-Decoder模型主要由两部分组成:编码器(Encoder)和解码器(Decoder)。 编码器(Encoder):负责将输入序列(如一段文本)转换为一个固定长度的上下文向量(context vector)。这个上下文向量可以看作是输入序列的一种抽象表示,它浓缩了输入序列中的关键信息。在这个过程中,编码器会对输入序列中的每个元素进行...
Encoder-Decoder(编码-解码)是深度学习中非常常见的一个模型框架,比如无监督算法的auto-encoding就是用编码-解码的结构设计并训练的;比如这两年比较热的image caption的应用,就是CNN-RNN的编码-解码框架;再比如神经网络机器翻译NMT模型,往往就是LSTM-LSTM的编码-解码框架。因此,准确的说,Encoder-Decoder并不是一个具体...
本文将深入探讨大语言模型的三大主要架构:Decoder-Only、Encoder-Only和Encoder-Decoder,帮助读者理解这些架构的基本原理及其在实际应用中的优势。 一、Decoder-Only架构 1.1 定义与特点 Decoder-Only架构,也被称为生成式架构,其核心在于仅包含解码器部分。这种架构的模型擅长于从输入中生成连续的输出序列,如文本生成、...
Transformer decoder 模型的进展在很大程度上是由OpenAI引领的。这些模型非常擅长预测序列中的下一个单词,因此主要用于文本生成任务。它们的进步是通过使用更大的数据集并将语言模型扩展到越来越大的尺寸来推动的。 1. GPT GPT的引入结合了NLP中的两个关键思想:新颖高效的Transformer decoder 架构和迁移学习。在该设置中...