Dataset 接受序列数据作为输入,并负责构建每个数据点以输入到模型中。Dataloader 则可以读取Dataset 生成批量的数据 代码语言:javascript 复制 classStoreItemDataset(Dataset): def__init__(self,cat_columns=[],num_columns=[],embed_vector_siz...
Encoder-decoder 模型在序列到序列的自然语言处理任务(如语言翻译等)中提供了最先进的结果。多步时间序列预测也可以被视为一个 seq2seq 任务,可以使用 encoder-decoder 模型来处理。本文提供了一个用于解决 Kag…
机器翻译是Encoder-Decoder模型最为广泛的应用之一。在机器翻译任务中,Encoder-Decoder模型将一个源语言句子映射成一个目标语言句子,其中编码器将源语言句子编码成一个固定长度的向量,解码器将这个向量解码成一个目标语言句子。 在编码阶段,编码器部分的任务是处理输入序列(源语言文本)。每个输入词元(可以是词或字符)被...
除了我们所看到的结合了 encoder 和 decoder 的Transformer 架构之外,BART(Bidirectional Auto-Regressive Transformers)和 T5(Text-To-Text Transfer Transformer)模型也属于此类。 实际上,decoder-only 架构和 encoder-only 架构的应用程序之间的区别有点模糊。例如,GPT 系列中的纯 decoder 模型可以为翻译等任务做好准备...
在原始的 Transformer 模型中(例如在机器翻译任务中),Encoder 和 Decoder 的注意力掩码策略有所不同,但并不是完全按照 BERT 和 GPT 的双向/单向掩码策略区分的。以下是详细解释: 1. Transformer 中的 Encoder 和 Decoder 的注意力机制
通过这种方式,机器翻译模型能够理解和转换不同语言之间的文本信息。这是Encoder-Decoder框架在机器翻译领域的经典应用。编码器负责将源语言的句子转化为上下文向量,而解码器则依据这个向量生成目标语言的翻译文本。机器翻译的过程包含六个关键步骤:首先是源语言输入,即将源语言的句子转换为词向量序列,作为编码器的输入...
Transformer的Encoder-Decoder编码器-解码器结构,这种结构被广泛应用于处理序列格式的数据(Seq2Seq);编码器和解码器是其组成部分的核心结构。 编码的过程是一个模式提取的过程,它的作用是把输入句子的特征提取出来;比如句子的文字,语义关系等;而解码的过程是一个模式重建的过程,它是根据编码器获取的模式特征生成新的我...
Encoder-Decoder模型框架(编码器-解码器模型框架)最早在2014年提出,当时是为了解决机器翻译的问题(机器翻译就是一个典型的Seq2Seq问题)而构建的,随后变成了深度学习中常见的模型框架。 Encoder-Decoder模型的结构包括一个编码器和一个解码器,编码器(Encoder)会先对输入的序列进行处理,然后将处理后的向量发送给解码器(...
encoder-decoder通俗解释 Encoder-decoder是一种常见的神经网络架构,通常用于序列到序列(sequence-to-sequence)的任务,例如机器翻译、文本摘要和对话生成等。简单来说,encoder-decoder模型由两部分组成:编码器(encoder)和解码器(decoder)。编码器负责将输入序列(例如一个句子)转换为一个固定长度的向量表示,而...