几乎所有主流的大模型都是基于 Transformer 网络架构构建的,Transformer 的重要性不言而喻。大模型可以类比人类的大脑,那么 Transformer 就可以类比人类大脑中的神经网络结构。 Transformer 网络结构最核心的组成部分为:编码器(Encoder)和解码(Decoder)。 编码器负责提取信息,通过细致分析输入文本,理解文本中各个元素的含义,...
Seq2Seq模型通过端到端的训练方式,将输入序列和目标序列直接关联起来,避免了传统方法中繁琐的特征工程和手工设计的对齐步骤。这使得模型能够自动学习从输入到输出的映射关系,提高了序列转换任务的性能和效率。 Seq2Seq 工作原理:Seq2Seq模型中的编码器使用循环神经网络将输入序列转换为固定长度的上下文向量,而解码器则利...
Transformer模型的结构图如下: 大模型结构 Encoder-only Encoder-Decoder Decoder-only 最近这段时间一直在研究这个大模型的能力到底来源于哪里?对于大模型的是否智能?有像图灵奖得主Yann LeCun这样持反对意见的,也有图灵奖得主Hinton持支持意见的,作为一名从业人员,我们先从模型架构的角度来解剖大模型,看看大模型到底是什...
学习模式:自编码器是无监督学习模型,而Encoder-Decoder模型通常用于监督学习任务。 应用焦点:自编码器主要用于学习数据的紧凑表示,如降维和去噪;Encoder-Decoder模型专注于将一种形式的序列转换为另一种形式的序列,如语言翻译或语音识别。 输出目标:自编码器的输出旨在尽可能接近输入,而Encoder-Decoder模型的输出是一个完...
本文将深入探讨大语言模型的三大主要架构:Decoder-Only、Encoder-Only和Encoder-Decoder,帮助读者理解这些架构的基本原理及其在实际应用中的优势。 一、Decoder-Only架构 1.1 定义与特点 Decoder-Only架构,也被称为生成式架构,其核心在于仅包含解码器部分。这种架构的模型擅长于从输入中生成连续的输出序列,如文本生成、...
Encoder(编码器)和 Decoder(解码器)之间只有一个「向量 c」来传递信息,且 c 的长度固定。当输入信息太长时,会丢失掉一些信息。就类似于大图片压缩后的变模糊。 对应的解决思路就是抓重点,也就是我们后面文章要说的注意力模型。 总结 Encoder-Decoder模型的结构包括一个编码器和一个解码器,编码器会先对输入的序...
Encoder-Decoder模型框架(编码器-解码器模型框架)最早在2014年提出,当时是为了解决机器翻译的问题(机器翻译就是一个典型的Seq2Seq问题)而构建的,随后变成了深度学习中常见的模型框架。 Encoder-Decoder模型的结构包括一个编码器和一个解码器,编码器(Encoder)会先对输入的序列进行处理,然后将处理后的向量发送给解码器(...
基本的Encoder-Decoder模型非常经典,但是也有局限性。最大的局限性就在于编码和解码之间的唯一联系就是一个固定长度的语义向量c。也就是说,编码器要将整个序列的信息压缩进一个固定长度的向量中去。但是这样做有两个弊端,一是语义向量无法完全表示整个序列的信息,还有就是先输入的内容携带的信息会被后输入的信息稀释...
Encoder-decoder 模型是一种用于解决序列到序列问题的循环神经网络(RNN)。 Encoder-decoder 模型由两个网络组成——编码器(Encoder)和解码器(Decoder)。编码器网络学习(编码)输入序列的表示,捕捉其特征或上下文,并输出一个向量。这个向量被称为上下文向量。解码器网络接收上下文向量,并学习读取并提取(解码)输出序列。
Transformer和以往的语言模型最大的区别就是在注意力和位置编码上的区别,并且消除了传统循环神经网络中的...