下面这张图是一个大模型的一个分布树,纵轴代表大模型的发布年份和大模型输入token数,这个图很有代表性,每一个分支代表不同的模型架构,今天以图中根系标注的三大类展开:Encoder-only、Encoder-Decoder、Decoder-only;我们分别来看一下这几个架构的特点和原理吧。Encoder...
几乎所有主流的大模型都是基于 Transformer 网络架构构建的,Transformer 的重要性不言而喻。大模型可以类比人类的大脑,那么 Transformer 就可以类比人类大脑中的神经网络结构。 Transformer 网络结构最核心的组成部分为:编码器(Encoder)和解码(Decoder)。 编码器负责提取信息,通过细致分析输入文本,理解文本中各个元素的含义,...
Transformer的Encoder-Decoder编码器-解码器结构,这种结构被广泛应用于处理序列格式的数据(Seq2Seq);编码器和解码器是其组成部分的核心结构。 编码的过程是一个模式提取的过程,它的作用是把输入句子的特征提取出来;比如句子的文字,语义关系等;而解码的过程是一个模式重建的过程,它是根据编码器获取的模式特征生成新的我...
这基本就是提示的原理,它让Decoder类模型可以在不fine-tune的情况适应各种类型的下游任务,同时也拥有了BERT的一些优势——虽然不是双向的,但应学习的知识都在前文里。 论文地址:Language Models are Few-Shot Learners 2.4 结合Encoder和Decoder 常见模型:T5,GLM 结构:结合Encoder和Decoder 方法:在Encoder中使用双向上...
Encoder-Decoder工作原理 一、Seq2Seq工作原理 Seq2Seq(Sequence-to-sequence):输入一个序列,输出另一个序列。 在2014年,Cho等人首次在循环神经网络(RNN)中提出了Seq2Seq(序列到序列)模型。与传统的统计翻译模型相比,Seq2Seq模型极大地简化了序列转换任务的处理流程。
本文将深入探讨大语言模型的三大主要架构:Decoder-Only、Encoder-Only和Encoder-Decoder,帮助读者理解这些架构的基本原理及其在实际应用中的优势。 一、Decoder-Only架构 1.1 定义与特点 Decoder-Only架构,也被称为生成式架构,其核心在于仅包含解码器部分。这种架构的模型擅长于从输入中生成连续的输出序列,如文本生成、...
Encoder-Decoder模型框架(编码器-解码器模型框架)最早在2014年提出,当时是为了解决机器翻译的问题(机器翻译就是一个典型的Seq2Seq问题)而构建的,随后变成了深度学习中常见的模型框架。 Encoder-Decoder模型的结构包括一个编码器和一个解码器,编码器(Encoder)会先对输入的序列进行处理,然后将处理后的向量发送给解码器(...
大型模型是指参数量较大、层数较深的深度学习模型。与传统的浅层模型相比,大型模型在语义理解、表示学习等方面具有更好的表现。在自然语言处理领域,大型模型的出现极大地推动了任务的发展,并在许多应用中取得了突出表现。 二、encoder-decoder结构 1. encoder部分 在encoder-decoder结构中,encoder负责将输入序列转化为一...
Encoder-Decoder(编码-解码)是深度学习中非常常见的一个模型框架,比如无监督算法的auto-encoding就是用编码-解码的结构设计并训练的;比如这两年比较热的image caption的应用,就是CNN-RNN的编码-解码框架;再比如神经网络机器翻译NMT模型,往往就是LSTM-LSTM的编码-解码框架。因此,准确的说,Encoder-Decoder并不是一个具体...
在自然语言处理领域,大语言模型作为核心技术之一,正引领着人工智能的新一轮变革。这些模型背后的架构是其强大功能的基石,其中Decoder-Only、Encoder-Only、Encoder-Decoder三种架构尤为引人注目。本文将深入探讨这三种架构的特点、适用场景以及它们各自的优势与局限。