Encoder的主要作用是进行特征提取,这样做是因为原始输入中包含一些无用或干扰信息,这会使模型的性能和泛化性大打折扣。所以在这之前,我们通过Encoder来先对数据进行一次特征提取和挖掘. 从架构上看Encoder仅仅只是一个编码器,但如果把这个编码器给放大,我们就能看到里面更多的东西,比如说Transformer架构中最经典的自注意...
这样,每个词的原始向量与其位置向量相加,形成了一个既含有词义也含有位置信息的新向量。 即便句子的顺序变化,位置向量也能保持词之间的相对位置关系,使得大模型能准确理解词与词之间的连接。 二、解码器(Decoder)架构剖析 现在轮到解码器承担任务。与编码器不同的是,解码器面临着额外的挑战:在不预见未来的情况下,逐...
Prefix LM(前缀语言模型)、Causal LM(因果语言模型)和Encoder-Decoder模型架构是自然语言处理(NLP)中用于文本生成和理解的几种不同方法。 1. Prefix LM(前缀语言模型) 前缀语言模型通常指的是一种能够基于给定的文本前缀生成后续文本的模型。它结合了编码器(Encoder)和解码器(Decoder)的架构,但共享相同的参数集合。
RAG新基座模型升级 ModernBert 自2018年Google发明BERT模型以来,大语言模型发展迅速,但encoder only分支改进较少。BERT及其变种RoBERTa主要用于编码任务,如分类、推荐等,而decoder only - 小工蚁于20241229发布在抖音,已经收获了21.7万个喜欢,来抖音,记录美好生活!
Transformer的Encoder-Decoder编码器-解码器结构,这种结构被广泛应用于处理序列格式的数据(Seq2Seq);编码器和解码器是其组成部分的核心结构。 编码的过程是一个模式提取的过程,它的作用是把输入句子的特征提取出来;比如句子的文字,语义关系等;而解码的过程是一个模式重建的过程,它是根据编码器获取的模式特征生成新的我...