However, a notable challenge has been the loss of clear supervision when it comes to Bird's Eye View elements. To address this limitation, we introduce CLIP-BEVFormer, a novel approach that leverages the power of contrastive learning techniques to enhance the multi-view image-derived BEV ...
X-Former的输入为一组可学习的query Z,输入文本Tk和图像特征(C, M)。第一个交叉注意块采用MAE特征(M)作为query,Q-Former输出(Zq)作为key和value,通过集成来自Q-Former的全局语义信息来对齐和增强M,从而丰富了MAE特征(M’)。随后,M’通过交叉注意整合全局和局部信息,将Q-Former输出(Zq)增强到Z '。 增强查询...
CLIP7 零样本/开放域分割: 通过微调CLIP来学习掩码级知识表征,通过对CLIP进行微调的方式来解决zero-shot segmentation和open-vocabulary segmentation。 Paper: https://arxiv.org/pdf/2310.00240.pdf Code: https://github.com/jiaosiyu1999/MAFT 本篇文章通过对CLIP进行微调的方式来解决zero-shot segmentation和open-...
CLIP_Surgery/demo.ipynb at master · xmed-lab/CLIP_Surgery · GitHub 代码目前是一个demo版本,其...
CLIP的泛化能力使其能够跨足不同的领域和任务,如视频行为识别,即使在没有针对特定任务进行过训练的情况...